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ABSTRACT
Decision diagrams are used in symbolic veri�cation to concisely
represent state spaces. A crucial symbolic veri�cation algorithm is
reachability: systematically exploring all reachable system states.
Although both parallel and distributed reachability algorithms exist,
a combined solution is relatively unexplored. �is paper contributes
BDD-based reachability algorithms targeting compute clusters:
high-performance networks of multi-core machines. �e proposed
algorithms may use the entire memory of every machine, allow-
ing larger models to be processed while increasing performance by
using all available computational power. To do this e�ectively, a dis-
tributed hash table, cluster-based work stealing algorithms, and sev-
eral caching structures have been designed that all utilise the newest
networking technology. �e approach is evaluated extensively on
a large collection of models, thereby demonstrating speedups up to
51.1x with 32 machines. �e proposed algorithms not only bene�t
from the large amounts of available memory on compute clusters,
but also from all available computational resources.
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1 INTRODUCTION
Reachability analysis is a crucial component in model checking as
it allows verifying temporal safety properties. Reachability analysis
systematically explores all reachable states of a given system. It
is computationally demanding, since its time (and for many ap-
proaches space) requirements increase exponentially with the num-
ber of processes and variables in the input model. �is phenomenon
is widely known as the state space explosion problem.

In many cases the space requirements of reachability analysis
can be signi�cantly lowered [10] by representing the set of visited
states symbolically [33], for example as Binary Decision Diagrams
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(BDDs). Another approach to lower space and time requirements
is to exploit parallel computing power. In a distributed se�ing
the memory of several machines can be combined, allowing larger
models to be processed, while in multi-core approaches speedup
can be obtained due to parallelism. However, BDD manipulations
are hard to parallelise as they are very memory intensive and their
memory access pa�erns are irregular [16].

�is paper contributes new algorithms for BDD-based reachabil-
ity that combine these approaches, targeting clusters of multi-core
machines connected via a high-speed network. �e novelty of the
approach is that we use the design of a shared-memory, multi-
core BDD package, viz. Sylvan [39], and project it onto distributed
networks of multi-core machines by using the newest networking
technology. In particular, In�niband networks [1] with support for
RDMA (Remote Direct Memory Access) are targeted, which allow
to minimise the cost and overhead of network communication.

�is se�ing requires a careful redesign of the basic ingredients of
a scalable BDD package, namely: a distributed concurrent hash table
that represents the BDD unique table and the operation cache; and
a distributed �ne-grained load balancer that schedules the parallel
invocations of the recursive BDD operations. �e main challenge in
the design of these components is to minimise the amount and over-
head of generated networking operations. We propose an e�cient
lockless distributed hash table with operations that exploit RDMA.
For load balancing we propose lockless work stealing algorithms
that take the processing hierarchy into account. Existing work on
distributed hash tables [15, 29, 36] and load balancers [13, 14, 27]
either rely on locking or generate more network tra�c, which have
negative e�ects on both performance and scalability.

�e BDD operations have been experimentally evaluated by
calculating the sets of reachable states of a large collection of
models, including well-known BEEM models and Petri nets, on
a high-performance compute cluster. Compared to sequential runs,
speedups up to 51.1x on 36 16-core machines are obtained, which
demonstrates a signi�cant improvement over existing work. To our
knowledge, we report the �rst distributed/multi-core BDD package.
Moreover, although this paper focusses on BDDs the implementa-
tion may very well be adjusted to support other decision diagram
variants, including MDDs, LDDs, and MTBDDs, as in [34, 39].

Related work on parallel BDD packages include BuDDy [12]
and CUDD [34]. Other BDD libraries like BeeDeeDee [24] and Syl-
van [39] apply parallelism on multi-core, shared memory machines,
where each worker can access every BDD node. Good performance
and scalability are reported. �ese libraries are all optimised for
NUMA architectures in a single-machine se�ing.

An earlier line of research, including [8, 9, 16, 19, 26], targeted
high-speed networks of workstations instead to exploit their com-
bined memory. �eir algorithms are based on message passing.
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However, their time e�ciency is limited, since network communica-
tion easily becomes a performance bo�leneck [10]. BDDNOW [26]
was the �rst distributed BDD package claiming some speedup on
a network of workstations. �e BDDs can be distributed in two
ways; Grumberg et al. [19] apply vertical slicing [20] to partition the
work among machines, and Chung and Ciardo propose horizontal
slicing for the saturation strategy [8]. E�ectively, slicing limits the
amount of available parallel work, but the speedup was improved
by performing speculative image computations [9]. Other work
targets distributed shared memory (DSM) architectures [7, 31] to
implement BDD algorithms using a standard depth-�rst approach.

�e paper is organised as follows. Section 3 discusses the de-
sign of the distributed BDD table. In Section 4 the operations for
hierarchical work stealing are presented. Section 5 shows the im-
plementation of the BDD algorithms by combining work stealing
with the concurrent hash table. Experimental results are presented
in Section 6. Finally, Section 7 summarises our conclusion.

2 PRELIMINARIES
�is section recalls the basic BFS algorithm for symbolic reacha-
bility. �e algorithm is de�ned using an if-then-else operation on
BDDs and an operation for calculating the relational product, which
we also de�ne. Section 5 presents distributed implementations of
these two BDD operations. Furthermore, this section discusses the
shared memory model that is used by our implementation.

2.1 Symbolic Reachability
�e following de�nition is based on the work of [6, 39].

De�nition 2.1. A (reduced ordered) BDD is a directed acyclic graph
with the following properties:

(1) �ere is a single root node and two terminal nodes 0 and 1.
(2) Each non-terminal node p has a variable var (p) = xi and

two outgoing edges, labelled “low” and “hiдh”. We use the
notations lvl (p) = i , p.low = q0, and p.hiдh = q1.

(3) For each edge from node p to non-terminal node q we have
lvl (p) < lvl (q) (i.e. the BDD is ordered).

(4) �ere are no redundant nodes, that is, nodesp withp.low =
p.hiдh (i.e. the BDD is reduced).

(5) �ere are no duplicate nodes, that is, nodes p,q with p , q
and lvl (p) = lvl (q) ∧ p.low = q.low ∧ p.hiдh = q.hiдh.

BDDs are used to e�ciently represent Boolean functions [6].
Most logical operators, including conjunction (∧), disjunction (∨),
implication (→), and equivalence (↔) can be performed on the
BDD representations of their operands via the ITE operator.

De�nition 2.2 (If-then-else). Let ϕ,ψ , ρ : Bn → B be three
Boolean functions and A,B,C their respective BDD representa-
tives. �e if-then-else operator, denoted by ITE(A,B,C ), is de�ned
as the BDD representing the function (ϕ ∧ψ ) ∨ (¬ϕ ∧ ρ).

De�nition 2.3 (Transition Systems). A transition system is a triple
(S, SI ,→), with S a set of states, SI ⊆ S a set of initial states, and
→ ⊆ S × S a transition relation.

LetBn be the set of alln-sized Boolean vectors andT = (Bn , SI ,→
) be a (Boolean) transition system. �en T can be represented by
Boolean membership functions; the initial states can be represented

Algorithm 1: Symbolic reachability
1 def Reach(I ,T ,X ,X ′):
2 States ← I

3 Prev ← 0
4 while States , Prev:
5 Succ ← RelProd(States,T ,X ,X ′)

6 Succ ← Rename(X ′,X , Succ )

7 Prev ← States

8 States ← ITE(States, 1, Succ )
9 return States

by a function ϕ : Bn → B such that SI = {s ∈ Bn | ϕ (s )} and the
transition relation can be represented by a functionψ : Bn ×Bn →
B such that ∀x ,y ∈ Bn . ψ (x ,y) ⇔ (x ,y) ∈ →. �e problem of �nd-
ing the set of reachable states of T can now be reduced to �nding a
�xed-point of the following series:

ϕ0 (s ) ≡ ϕ (s )

ϕi+1 (s ) ≡ ϕi (s ) ∨ ∃s
′.(ϕi (s

′) ∧ψ (s ′, s ))

To clarify, theψ -successors ofϕi (s ) are obtained via ∃s ′.(ϕi (s ′)∧
ψ (s ′, s )) and reachability is performed by repeatedly �nding ψ -
successors, starting from ϕ, until a �xed point is reached, that is,
until ϕ j (s ) = ϕ j+1 (s ) for some j ≥ 0. By computing reachability
over the BDD representations of ϕ andψ , symbolic reachability over
the transition system T is performed. Finding ψ -successors with
BDDs involves calculating relational products.

De�nition 2.4 (Relational Product). Let X = {x1, . . . ,xn } and
X ′ = {x ′1, . . . ,x

′
n } be two sets of (disjoint) variables, ϕ : Bn → B

a Boolean function, and ψ : Bn × Bn → B a Boolean relation.
Let A and B be the respective BDD representations of the func-
tions ϕ andψ . �e relational product over A and B with respect to
X ′, denoted by RelProd(A,B,X ,X ′), is the BDD representing the
function ∃X .(ϕ (X ) ∧ψ (X ,X ′)).

Algorithm 1 presents a basic BFS symbolic reachability algorithm,
named Reach(I ,T ,X ,X ′), where X and X ′ are two (disjoint) sets
of variables and I andT the BDDs representing the initial state and
the transition relation, respectively. �e algorithm uses RelProd to
�nd successors of States and uses ITE to unify States and Succ via
disjunction (by calculating States ∨ Succ). �e Rename operation
simply renames all occurrences of variables in X ′ by the matching
variables in X in the BDD Succ . Reach terminates when a �xed
point has been found, which happens when States = Prev .

2.2 Shared Memory Abstraction
�e algorithms proposed in this paper target In�niband networks
with support for Remote Direct Memory Access (RDMA). In par-
ticular, one-sided RDMA operations are used, which are network
operations that access the memory of a remote machine without
invoking its CPU. One-sided RDMA is highly optimised to min-
imise overhead from the OS kernel and relieves the remote CPU
from handling incoming network tra�c. As a result, compared
to TCP over Ethernet, In�niband lowers latency by an order of
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magnitude when using one-sided RDMA [29]. �is motivated a
renewed a�empt to directly distribute BDD operations.

On top of this network model sits a Partitioned Global Address
Space (PGAS) [11] so�ware layer that provides the required shared-
memory abstraction to our BDD algorithms. PGAS combines the
shared and distributed memory models and thereby exposes data-
locality. �e PGAS abstraction allows to allocate memory uniformly
over a network of machines and provides a shared-memory inter-
face to this memory. All machine-local memory accesses are then
handled by the local CPU and all remote memory accesses are
translated to one-sided RDMA operations.

We now introduce some notation. In a PGAS environment with
n threads, named t0, . . . , tn−1, a shared array B can be uniformly
allocated if B can be indexed B[0], . . . ,B[kn−1] for some k > 0. �e
PGAS abstraction distributes B equally over the n threads, so that
each thread owns k consecutive entries of B. For any thread ti we
write ti .B[0], . . . , ti .B[k − 1], or simply ti .B to denote the k entries
of B owned by ti . To distribute B, the PGAS abstraction allocates
memory on each machine according to the thread layout, so that
ti .B is local memory for the thread ti . As an advantage, threads
may bene�t from exploiting data-locality and the block symmetry
makes programming easier. Standard reads and writes on shared
memory, wri�en “val ← B[j]” and “B[j] ← val” for some index
j, are handled locally by the CPU if B[j] is local, or via one-sided
RDMA in case B[j] is in remote memory. An atomic cas(B[j], c,v )
operation is used to prevent races, which takes a shared memory
location B[j] and writes v to B[j] only if B[j] contains c . �e value
at location B[i] prior to calling cas is returned.

We use PGAS in a distributed se�ing, but heterogeneous and
NUMA-aware architectures are also supported. All threads compute
in a Single Program Multiple Data (SPMD) fashion.

3 DISTRIBUTED UNIQUE TABLE
�e two central data structures of modern BDD packages are the
unique table and the operation cache (sometimes called the computed
table) [37]. �e unique table contains all BDD nodes and is used to
avoid duplication. �e operation cache stores results of previous
BDD operations and is used to avoid repetitive work, which is key
to e�cient BDD manipulation. Both these tables are implemented
as hash tables. Since BDD operations are very memory intensive, a
scalable hash table design is crucial for a scalable BDD package.

�e major challenge for a distributed BDD package is distribut-
ing the unique table and operation cache over the network so that
their entries can be accessed with minimal access times by any
worker needing them. Our approach is to distribute the hash tables
by using the PGAS abstraction. One-sided RDMA is exploited to
minimise the overhead of �nds and inserts. Moreover, an adaptive
hashing strategy is used to dynamically adjust and reduce the re-
quired number of RDMA operations, based on the load-factor. �is
improves hash table access-times and increases the scalability.

Related work includes Pilaf [29], Nessie [36], and FaRM [15].
Pilaf is a key-value store and assumes a se�ing with a single server
and multiple clients. Lookup operations are handled by clients via
one-sided RDMA. However, to avoid read-write races all inserts are
handled by the server. �e Cuckoo hashing strategy is used to keep
the amount of network tra�c low. Nessie is a distributed hash table

index entry

occ hash index in data

1 bit 20 bits 43 bits

data entry

comp var high low

1 bit 41 bits 43 bits 43 bits

Figure 1: �e memory layout of our lockless hash table, im-
plemented as two separate shared arrays, named data and
index. �e data array stores BDD nodes as 128-bit entries and
the index array is used as an indexing array for data.

that improves on Pilaf by allowing clients to handle both lookups
and inserts via RDMA. FaRM implements a hash table that uses a
variant of Hopscotch hashing that is more e�cient than Cuckoo
hashing in terms of required network operations. FaRM aims to
minimise latency, but at the cost of CPU activity.

Our approach improves by using linear probing instead of Cuckoo
hashing or Hopscotch hashing [30]. Since linear probing examines
buckets that are consecutive in memory, a range of buckets can be
obtained with a single RDMA operation and then examined in local
memory. As the load-factor increases, our hashing strategy also in-
creases the range of buckets obtained by the RDMA operation. �is
approach reduces network tra�c when the load-factor increases
and thus contributes to the scalability. In contrast, Cuckoo hashing
already requires multiple RDMA reads per probe and Hopscotch
hashing becomes less e�cient when the load-factor increases [30].

�e remaining section discusses the unique table, in particular its
memory layout and the operations for �nding and inserting BDD
nodes. �e operation cache can be implemented as a simpli�ed
version of the unique table and is discussed in Section 5.

3.1 Memory Layout
Figure 1 shows the memory layout of the unique table, which is im-
plemented as two separate arrays, named index and data. �e data
array contains BDD nodes and index is used as an indexing array
for data. Both arrays are uniformly distributed over all machines
in the network via the shared-memory PGAS abstraction.

Using two separate arrays has multiple advantages for BDD
packages [35, 40]. Firstly, this design allows garbage collection
to be implemented e�ciently, as reorganising index can be done
without a�ecting the entries of data. Secondly, this design allows
to save on RDMA operations by restricting hash table insertions to
only write to local memory regions of data. To make this work, data
maintains the invariant of a global-read, local-write array; each
thread ti may read any part of data but is only permi�ed to write
in its local block ti .data. �e index array is then used as a global
indexing array; in contrast to data, each thread may atomically
write to every entry in index via compare-and-swap.

Figure 1 shows that every BDD node B stored in data is stored
as an 128-bit entry and consists of four components. �e B.var
component holds the BDD variable and the components B.hiдh and
B.low represent the high edge and low edge of B, respectively. �e
high- and low edges are simply addresses to other entries in data.
�e last component, B.comp, holds a single bit for representing
complement edges [28]. If B.comp is set, B is negated by switching
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Algorithm 2: Lookups and Inserts (on thread ti )
1 def ti .LookupOrInsert(B):
2 data[ti .localpos]← B

3 ranдesize ← CurrentRange()

4 for j ← 0 to threshold:
5 ranдe ← FetchRange(j, ranдesize )

6 for k ← 0 to ranдesize − 1:
7 if ranдe[k].occ:
8 index ← CheckNode(ranдe[k],B)
9 if index , invalid: return index

10 else
11 b ← MakeNewEntry(ti .localpos,B)

12 addr ← AddressOf(ranдe[k])
13 b ′ ← cas(index[addr ], ranдe[k],b)
14 if b ′ = ranдe[k]:
15 ti .localpos ← ti .localpos + 1
16 return ti .localpos − 1
17 index ← CheckNode(b ′,B)

18 if index , invalid: return index

19 return full

its terminals, thereby allowing its subgraphs to be reused. As a
result, BDD negations become trivial to implement.

Each entry b in index consists of three components. �e �rst
is b .occ , which is a single bit that denotes whether the entry b is
occupied (currently in use). �e third component is b .index , which
simply holds an address to an entry in data (that is, to a BDD node).
Assuming that data[b .index] = B, the second component b .hash
is a fragment of the hash value of B. �is fragment is stored to
sometimes prevent reading from data during hash table operations.
For example, by inspecting b .hash it may already be clear that
data[b .index] does not contain the intended BDD node. In such
cases, consulting b .hash prevents an unneeded RDMA read.

3.2 Lookups and Inserts
Our hash table supports a single operation, named LookupOrInsert,
that takes a BDD node B as argument and inserts B into data if B has
not been inserted before. Testing whether data already contains B
is done e�ciently by consulting the index table. LookupOrInsert
returns either the index of B in data, or the value “full” indicating
that B has not been found nor been inserted.

Algorithm 2 shows the implementation of LookupOrInsert on
thread ti . Recall that threads only write to parts of data that are
local to them. To maintain this invariant, LookupOrInsert starts
by writing B into data[ti .localpos] on line 2, where ti .localpos is
ti ’s index to the next free entry in the local block ti .data.

A�er that, the range size is determined on line 3 by invoking
CurrentRange. �e range size determines the number of entries ob-
tained from index to be examined via linear probing. CurrentRange
increases the sizes of ranges when the load-factor increases. �e
j-th consecutive range is obtained from index via the FetchRange

Algorithm 3: Retrieving BDD nodes from data

1 def FetchNode(b):
2 B ← FindInCache(b)

3 if B = notfound:
4 B ← data[b .index]
5 PutInCache(b,B)

6 return B

7 def CheckNode(b,B):
8 hash ← hashvalue(B)

9 if b .hash matches hash:
10 if B = FetchNode(b):
11 return b .index

12 return invalid

operation on line 5 and is stored in the array ranдe . �e loop on
line 6 then iterates over ranдe in the fashion of linear probing.

When considering the k-th iteration over ranдe , if ranдe[k] is
occupied we check if B matches with data[ranдe[k].index], thereby
determining whether B has already been inserted. �is check is
done via CheckNode on line 8, whose implementation is given in
Algorithm 3. Note that CheckNode only consults data when the
hash value of B matches with the hash fragment stored in ranдe[k].
Moreover, an extra caching layer is added internally to further
reduce the number of generated RDMA calls (see FetchNode).

If, however, ranдe[k] is unoccupied the algorithm tries to claim
the corresponding entry in index on line 13. To prepare for this a
new entry for index is created (line 11) and the address in index
corresponding to ranдe[k] is calculated (line 12). If the claim suc-
ceeds, ti .localpos is incremented and returned on line 16, otherwise
some other worker has claimed index[addr ] in between lines 5 and
13. It may happen that the other worker inserted B at that location,
therefore the check at line 18 is needed to ensure correctness.

Instead of linear probing we considered using quadratic probing
for retrieving consecutive ranges (on line 5), as suggested by Laar-
man et al. [23]. �adratic probing reduces clustering, which is a
known problem of linear probing. However, to preserve correctness
when using quadratic probing the range sizes (line 3) need to be
static. We implemented both strategies but found linear probing to
be more e�cient in terms of generated network tra�c due to the
dynamic range sizes. We did not observe serious clustering issues.
Nonetheless, both strategies are implemented, so if the user �nds
himself limited by clustering he can switch strategy.

4 HIERARCHICAL WORK STEALING
BDD operations are generally de�ned recursively. Parallel BDD
packages like Sylvan apply �ne-grained task parallelism by en-
capsulating each recursive call as a task. Every thread maintains
a local task pool on which these tasks can be pushed or popped.
When a thread becomes idle (runs out of tasks) it a�empts to steal
work from remote task pools. In this scenario the stealing thread is
referred to as the thief and the targeted thread as the victim.

Many work stealing frameworks [17, 38], including frameworks
designed for compute clusters [13, 14, 27] implement their task
pools as split deques. Split deques are double-ended queues that are
partitioned into a public and a private region via a dynamic split
point. �ieves may only steal from the public regions of remote
deques and steal operations are handled without the victim’s help.
Deque owners may adjust their split point to adapt the public region.
However, the operations for task stealing and split point adaption
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deque

. . .

(k ×m) bytes

request

8 bytes

transfer

m bytes

status

8 bytes

Figure 2: Per-thread memory organisation for private-
deque work stealing, with k the number of entries in deque
andm the size in bytes of each task.

o�en rely on locking for their correctness, which has negative
e�ects on scalability, especially in a distributed se�ing.

For our distributed se�ing we designed algorithms for lockless
private-deque work stealing. Private deques do not have public
regions and are maintained entirely in private memory. Steal oper-
ations are performed by sending the victim a steal request and the
victim responds by sending the thief part of the tasks in its deque.
Compared to using split deques this approach is lockless, but re-
quires active participation of victims. However, this is compensated
for by handling steal requests while waiting for pending RDMA
operations, thereby making e�ective use of the victim’s idle-times.

Related work includes Wool [17] and Lace [38], which are light-
weight variants of Cilk [5], all frameworks for �ne-grained task
parallelism. �e multi-core BDD package Sylvan [39] demonstrates
good parallel scalability in symbolic reachability by using Lace.
None of these frameworks, however, considers the processing hier-
archy. �e cluster-based task-parallel frameworks HotSLAW [27]
and Scioto [13, 14] target networks of multi-core machines and
exploit the locality hierarchy. However, both frameworks rely on
locking for their correctness, which severely impacts performance.

Figure 2 presents the per-thread memory organisation of our
se�ing. Each thread ti maintains a task pool ti .deque, handles
steal requests and responses via ti .request and ti .transfer, and uses
ti .status for termination detection. Moreover, status can be used to
initiate a stop-the-world scenario, for example needed by garbage
collection. Each memory component is shared, including deque,
since threads are allowed to write back the results of stolen tasks
directly into remote deques via one-sided RDMA.

4.1 Task Parallelism
Like most other frameworks for task parallelism our implemen-
tation uses the operations spawn, call, and sync to spawn and
execute new tasks, and synchronise on tasks, respectively. �e
notation ti .spawn is used to indicate that the spawn is performed
by thread ti (and likewise for ti .call and ti .sync). More speci�cally,
ti .spawn(T ) pushes a task T onto ti .deque.tail , thereby allowing
other threads to steal T while ti is working on other tasks. �e
ti .call(T ) operation executes a task T on the calling thread ti with-
out adding it to ti .deque beforehand. Finally, ti .sync() pops a task
T from ti .deque.tail and executes it, or returns T ’s result in case T
was stolen and the result has been wri�en back by the thief.

To illustrate the use of task parallelism, Algorithm 4 presents
two (functionally equivalent) algorithms for calculating Fibonacci:
a standard sequential, recursive version, FibSeq; and a task-parallel
version, FibPar, in which the recursive calls are translated to tasks.

Algorithm 4: Sequential and Parallel Fibonacci

1 def FibSeq(n):
2 if n < 2: return n

3 a ← FibSeq(n − 1)
4 b ← FibSeq(n − 2)
5 return a + b

6 def FibPar(n):
7 if n < 2: return n

8 spawn(FibPar,n − 1)
9 r ← call(FibPar,n − 2)

10 return r + sync()

Technically, the task-parallel version starts by assigning the initial
task “(FibPar,n)” to the thread t0. All other threads eagerly a�empt
to obtain work via steal operations and eventually succeed. Due
to the stack-like invocations of spawn and sync, t0 is also the last
thread to execute a task. When this happens t0 writes “done” to
ti .status on every thread ti , thereby indicating that they may also
terminate. Finally, every thread ti terminates when it reads “done”
in ti .status.

4.2 Work Stealing
�e stealing procedure is handled internally by two operations.
�e �rst is ti .steal(j ), called by a thief ti to a�empt a steal from a
chosen victim thread tj . �e second operation is tj .communicate()
and is used by the victim tj to handle the steal request. �e following
three steps are taken when a thread ti a�empts to steal from tj :

(1) �read ti invokes steal(j ), which atomically writes a
“〈steal, i〉” message into tj .request by applying cas. If cas
succeeds, ti waits until tj has wri�en a response to ti .transfer.
Waiting is done by continuously polling on ti .transfer.

(2) �read tj invokes communicate(), which simply checks
if tj .request contains a “〈steal, i〉” message. In that case,
if tj .deque.head holds a task T that can be stolen, then
tj writes a “〈response,T 〉” message into ti .transfer, other-
wise an empty message “〈response〉” is wri�en back. To
minimise latency and idle-times of both thieves and vic-
tims, communicate is called as o�en as possible, mostly
while waiting for pending RDMA operations.

(3) �read ti receives a “response” message from tj . If it con-
tains a taskT , thenT is executed and its result is wri�en to
the original task entry in tj .deque. Otherwise, ti searches
for another victim and tries again.

Successful steals require merely three one-sided RDMA writes
(1.5 network round-trips): one for the atomic write to tj .request,
one for writing to ti .transfer, and one for writing back the result
to tj .deque. Furthermore, communicate is non-blocking, meaning
that it does not wait for RDMA operations to complete before
returning. �erefore, handling steals requires only a very small
amount of work and most overhead for stealing resides at steal.

4.3 Victim Selection
Before a thief performs a steal(j ) operation it has to select a victim
thread tj . �e victim selection procedure keeps the processing
hierarchy into account, meaning that the thief prefers to select a
victim that is physically close to it. By doing so, network tra�c as
well as the idle-times of thieves are further reduced. Hierarchical
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victim selection has also been shown to achieve be�er performance
compared to a purely randomised victim selection strategy [27].

Our victim selection procedure �rst uses leapfrogging [41], a
strategy in which victims steal back from their thieves and thereby
obtain part of their original work. An advantage is that leapfrog-
ging limits space requirements of deques to the size required for
sequential execution [18]. If leapfrogging fails, victims are ran-
domly selected by considering the processing hierarchy. More
speci�cally, every thread ti maintains four disjoint sets ti .domj
with j ∈ {0, . . . , 3} of thread identi�ers that represent the process-
ing hierarchy from ti ’s perspective. �ese sets are constructed so
that ti .domj ⊆ {0, . . . ,n − 1} with n the number of active threads,
and are de�ned so that all threads in ti .domk+1 have higher memory
access times than threads in ti .domk relative to ti . Before consid-
ering victims in ti .domk+1, a thief ti �rst a�empts |ti .domk | steal
a�empts on victims randomly selected from ti .domk .

Min et al. show that steal-many strategies, i.e. stealing more than
one task per steal operation may improve scalability [27]. Steal-
many strategies may be bene�cial when stealing from threads with
high memory access times, for example from threads in ti .dom3. We
experimented with several steal-many strategies, including steal-
half and hierarchical-adapted stealing [27]. However, in case of
BDD operations we observed that skews occur in load-balancing,
which negatively impact scalability. We found that a simple steal-1
strategy performs best for BDD operations.

5 DISTRIBUTED REACHABILITY ANALYSIS
�is section discusses the unique table and the distributed imple-
mentations of the operations needed to perform reachability, ITE
and RelProd. Both these operations apply private-deque work
stealing and use the distributed hash table discussed earlier. Note
that all these components can be reused to implement other BDD
operations or to support alternative decision diagram variants.

During distributed symbolic reachability, each thread holds a
copy of the �xed (partitioned) transition relation in local memory
to save on network operations. �e alternative would be having a
single shared transition relation, implemented on the PGAS abstrac-
tion, but then certain parts of data and thereby certain machines
may become hotspots. We implemented both but the local memory
variant shows clear performance bene�ts.

5.1 Operation Cache
�e task-parallel implementations of ITE and RelProd rely on dy-
namic programming to achieve a polynomial time complexity. �e
intermediate results of their computations are therefore stored in
a global operation cache. �e operation cache is implemented as
a lossy hash table similar to the one described in Section 3. Find-
ing and inserting a task T is done via two separate operations:
FindInCache(T ) and PutInCache(T ). �e main di�erence with
LookupOrInsert is that hash collisions are not resolved; instead of
obtaining a range of entries, only a single entry is considered and
collisions are handled simply by overwriting the colliding entry.

Like in Section 3 two separate shared arrays are used to imple-
ment the underlying hash table, named cacheindex and cachedata.
�e cachedata array stores the actual tasks and cacheindex is a
global indexing array for cachedata. Furthermore, cachedata is

Algorithm 5: If-then-else (see also De�nition 2.2)
1 def ITE(bI ,bT ,bE):
2 if bI = 1: return bT
3 if bI = 0: return bE
4 index ← FindInCache(ITE,bI ,bT ,bE )

5 if index = notfound:
6 do in parallel:
7 BI ← GetNode(bI )

8 BT ← GetNode(bT )

9 BE ← GetNode(bE )

10 x ← TopVariable(BI ,BT ,BE )

11 〈b0
I ,b

1
I 〉 ← 〈Low(BI ,x ), High(BI ,x )〉

12 〈b0
T ,b

1
T 〉 ← 〈Low(BT ,x ), High(BT ,x )〉

13 〈b0
E ,b

1
E 〉 ← 〈Low(BE ,x ), High(BE ,x )〉

14 spawn(ITE,b0
I ,b

0
T ,b

0
E )

15 hiдh ← call(ITE,b1
I ,b

1
T ,B

1
E )

16 low ← sync()
17 B ← MakeNewNode(x ,hiдh, low )

18 index ← LookupOrInsert(B)

19 PutInCache(ITE,bI ,bT ,bE , index )

20 return index

a global-read, local-write array; by executing ti .PutInCache(T )
the thread ti inserts the given task T locally into ti .cachedata. It
would be possible to implement the operation cache as a single
shared array, but this would make PutInCache more expensive in
terms of network tra�c since task sizes may be variable. Currently,
PutInCache generates at most one RDMA write. FindInCache
generates at most two RDMA reads for successful lookups. Unsuc-
cessful cache lookups require only a single RDMA read.

5.2 If-then-else
Algorithm 5 presents a simpli�ed implementation for the ITE oper-
ation for BDDs. �e algorithm takes three references to BDD nodes
(entries in index) as input, named bI , bT , and bE , that represent the
three operands to be considered (resp. “if”, “then”, and “else”).

ITE starts by considering terminal cases (lines 2 and 3). IfbI is not
a terminal node, the operation cache is consulted on line 4. �is pre-
vents duplicate work in case the result of computing ITE(bI ,bT ,bE )
has already been calculated and stored in the cache. If this is not
the case, the three BDDs referred to by bI , bT , and bE are asyn-
chronously obtained (lines 6 to 9) and their cofactors determined
(lines 10 to 13). A�erwards, ITE is recursively applied via task par-
allelism on lines 14 to 16. Finally, the resulting BDD is inserted into
the hash table (line 18) and added to the operation cache (line 19).

�e ITE implementation as shown in Algorithm 5 uses a number
of auxiliary functions. �e function High(B, x ) is used to follow an
edge of a given BDD node B along the variable x . More speci�cally,
if B.var = x , then B.hiдh is returned, otherwise the edge is not
followed and the address of B in data is returned instead. �e
function Low(B, x ) works like High but follows the low edge instead.
TopVariable(B0, . . . ,Bk ) determines the top variable of the given
sequence of BDD nodes according to the global variable ordering.



Distributed Binary Decision Diagrams for Symbolic Reachability SPIN’17, July 2017, Santa Barbara, California, United States

Algorithm 6: Relational Product (see also De�nition 2.4)
1 def RelProd(bϕ ,bψ ,X):
2 if bϕ = 1 ∧ bψ = 1: return 1
3 if bϕ = 0 ∨ bψ = 0: return 0
4 index ← FindInCache(RelProd,bϕ ,bψ ,X )

5 if index = notfound:
6 do in parallel:
7 Bϕ ← GetNode(bϕ )

8 Bψ ← GetNode(bψ )

9 x ← TopVariable(Bϕ ,Bψ )

10 〈b0
ϕ ,b

0
ψ 〉 ← 〈Low(Bϕ ,x ), Low(Bψ ,x )〉

11 〈b1
ϕ ,b

1
ψ 〉 ← 〈High(Bϕ ,x ), High(Bψ ,x )〉

12 if x ∈ X :
13 do in parallel:
14 B0

ψ ← GetNode(b0
ψ )

15 B1
ψ ← GetNode(b1

ψ )

16 spawn(RelProd,b0
ϕ , Low(B

0
ψ ,x ),X )

17 spawn(RelProd,b1
ϕ , High(B

0
ψ ,x ),X )

18 spawn(RelProd,b0
ϕ , Low(B

1
ψ ,x ),X )

19 b11 ← call(RelProd,b1
ϕ , High(B

1
ψ ,x ),X )

20 〈b10,b10,b00〉 ← 〈sync(), sync(), sync()〉
21 spawn(ITE,b00, 1,b01)
22 hiдh ← call(ITE,b10, 1,b11)
23 low ← sync()
24 index ← FindOrPut(MakeNode(x ,hiдh, low ))

25 else
26 spawn(RelProd,b0

ϕ ,b
0
ψ )

27 hiдh ← call(RelProd,b1
ϕ ,b

1
ψ )

28 low ← sync()
29 index ← FindOrPut(MakeNode(x ,hiдh, low ))

30 PutInCache(RelProd,bϕ ,bψ ,X , index )

31 return index

Finally, the MakeNewNode(x ,b1,b0) function de�nes a fresh BDD
node B such that B.var = x , B.hiдh = b1, and B.low = b0.

�e actual code implementation contains several optimisations
based on ideas in [39]. Notably, additional terminal cases are de�ned
so that less tasks are generated. �is leads to be�er performance
and scalability since each task may generate multiple network calls
during its execution. Also, while waiting for the parallel block
(lines 6 to 9) to terminate the implementation continuously calls
communicate() to handle possible incoming steal requests.

5.3 Relational Product
Algorithm 6 shows a simpli�ed implementation of RelProd. Like
in De�nition 2.4 the algorithm takes two references to BDD node
as input, named bϕ and bψ , as well as a set X of variables. Note that
this implementation does not take a second set X ′ of variables as
input parameter. Instead, we assume that the current-state variables

(X ) and next-state variables (X ′) are interleaved (alternated) in the
global variable order. �is allows us to optimise the reachability
algorithm presented in Section 2 by merging RelProd with Rename,
resulting in the algorithm presented here [39].

RelProd starts by considering terminal cases (lines 2 and 3) and
by consulting the operation cache. If the cache does not yet contain
the computational results, the BDD nodes Bϕ and Bψ referred to by
bϕ and bψ are asynchronously retrieved (lines 6 to 8) and their top
variable x is determined. If x < X the variable is not considered (as
in this case x is a next-state variable) then RelProd continues by
recursively considering the cofactors of Bϕ and Bψ (lines 26 to 29).
Otherwise, if x ∈ X the BDD nodes referred to by Bψ .hiдh and
Bψ .low are asynchronously obtained (lines 13 to 15) and all four
cofactors determined. A�er that, RelProd is applied on the four
cofactors to encode the Rename operation (lines 16 to 20), and the
resulting two BDDs are joined by disjunction (lines 21 to 23).

�e code implementation of Algorithm 6 is optimised in a way
similar to ITE, for example by de�ning extra terminal cases.

6 EXPERIMENTAL EVALUATION
We evaluated our approach by performing reachability over a large
collection of models, 415 in total, taken from the well-known BEEM
benchmark set [32] and from the Model Checking Contest 2016
(MCC’2016) problem set [22]. To increase performance, all these
models have a partitioned transition relation [39]. �e experiments
have been performed on the DAS-5 compute cluster [3], thereby
using up to 32 nodes, each having 16 CPU cores (Intel E5-2630v3)
and 64 GB internal memory, connected via a 48 Gb/s Mellanox
In�niband network. Every node runs CentOS 7.1.1503 with kernel
version 3.10.0. To measure scalability along the number of machines,
each model has been benchmarked in multiple con�gurations (�ve
in total), ranging from single-machine sequential runs to executions
with 32 machines, 16 threads each. We repeated each experiment
at least three times and considered the average measurements,
which resulted in more than 18.800 experimental runs. �e entire
benchmarking e�ort took roughly one month in total.

�e BDD algorithms and the shared data structures have all
been implemented in Berkeley UPC, version 2.22.3. �e full source
code and all experimental data can be found at: h�ps://github.com/
utwente-fmt/distbdd-spin17.git. We compiled the implementation
using the command options upcc -network=mxm -opt -O, thereby
employing In�niband verbs (one-sided RDMA) as well as enabling
the Mellanox Messaging Accelerator (MXM) [2] library.

We use T tm to denote the average measured wall-clock time in
a con�guration with m machines, each having t parallel threads
(so m × t threads in total). We also compare our implementation
with Sylvan, the current state-of-the-art parallel BDD package [40].
With St we denote the average measured wall-clock time using
Sylvan with t workers. In every run we used a time-out of 3600
seconds and we limited memory usage to 16 GB per machine.

For every single-machine run we switched to quadratic probing
as the collision strategy for the unique table. For parallel runs we
found quadratic probing to be more e�cient, since linear probing
o�en introduces at least some clustering. However, for distributed
runs the e�ects of clustering are outweighed by the performance
gains of the dynamic range sizes.

https://github.com/utwente-fmt/distbdd-spin17.git
https://github.com/utwente-fmt/distbdd-spin17.git
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(a) Comparison between single-threaded runs (T 1
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(b) Comparison between two-machine distributed runs, each us-
ing one thread (T 1

2 ) and the speedup with respect to 32-machine
distributed runs (T 16

32 ). Only BEEM models are considered.
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2 (2-machine distributed runs) and
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32 (32-machine distributed runs).

BEEM models are depicted as circles and Petri nets as squares.

Figure 3: Experimental results of performing reachability over all BEEM models and Petri nets that did not time out. �ese
four comparisons show that large model sizes correlate to better performance, both parallel (le�) and distributed (right).

Figure 4: Speedups of performing reachability over two
BEEM models: adding.5 (le�) and anderson.8 (right). �e
speedups are calculated as T 1

1 /T
t
m by scaling along the num-

berm ofmachines and the number t of threads permachine.

6.1 Experimental Results
Figure 3 shows speedup graphs that relate the sizes of models to
parallel and distributed performance. Note that Figures 3a and 3b
only contain BEEM models. Since the Petri net models are generally
much larger than BEEM models we only considered parallel (16-
threaded) con�gurations while benchmarking with Petri nets.

�e lowest speedups are obtained by the models with the smallest
state spaces. �is is because the amount of computation performed
per �xed point iteration is small, which negatively impacts scala-
bility since threads implicitly synchronise a�er each iteration. �e
largest models scale best since each iteration involves a fair amount
of computational work, enough to keep all threads occupied.

Figure 3a shows that many of the larger BEEM models reach
speedups of 10x to 20x compared to single-threaded runs. �e
largest speedup is obtained by adding.6, namely 51.1x. Figure 3c
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Table 1: A selection of our experimental results, showing computation times and speedup of both small and very largemodels.
A comparison with the parallel BDD package Sylvan is also shown. We use time to denote a timeout, mem to denote an “out-of-
memory” failure, and “-” means that the result could not be calculated (as a result of either time or mem).

Experiments Time Sylvan Speedup
Model # States # Nodes T 16

1 T 16
2 T 16

32 S1 S16 T 16
1 /T 16

32 T 16
2 /T 16

32 S1/T 16
32 S16/T 16

32
2D8gradient-5x5.150 6.8 × 1018 3.9 × 104 mem 3440, 84 1083, 67 time time - 3.18x - -
adding.6 7.6 × 106 3.5 × 105 139, 06 291, 94 36, 19 405, 65 33, 74 3, 84x 8.07x 11, 21x 0, 93x
anderson.8 5.4 × 108 2.8 × 105 28, 73 75, 30 24, 32 61, 70 5, 90 1, 18x 3.10x 2, 54x 0, 24x
armCacheCoherence 3.2 × 108 8.4 × 103 173, 90 400, 30 71, 03 1613, 06 107, 33 2, 45x 5, 64x 22, 71x 1, 51x
at.5 3.2 × 107 2.3 × 105 12, 03 28, 33 7, 20 25, 42 2, 20 14, 82x 3, 93x 1, 67x 0, 31x
blocks.4 1.0 × 108 4.3 × 106 time time 67, 11 963, 33 79, 51 - - 1, 67x 1, 18x
bridgeAndVehicles.V20 9.8 × 106 7.5 × 105 372, 29 649, 71 122, 25 2032, 39 155, 28 3, 05x 5, 31x 16, 62x 1, 27x
csrepetitions.4 3.1 × 1013 2.2 × 105 mem 944, 65 207, 46 2403, 42 273, 31 - 4, 55x 11, 58x 1, 32x
drivingphils.4 2.7 × 108 5.4 × 106 mem mem 229, 71 2637, 96 223, 09 - - 11, 48x 0, 97x
erk.000100 1.6 × 1010 3.7 × 106 time time 2837, 10 time time - - - -
FMS.100 9.8 × 1018 1.2 × 105 time time 1264, 51 time time - - - -
gallocres.5 1.1 × 108 6.8 × 105 1506, 70 2476, 16 281, 80 time 415, 21 5, 35x 8, 79x - 1, 47x
kanban.50 1.0 × 1016 1.1 × 105 2063, 76 3462, 97 532, 09 time 2714, 06 3, 88x 6, 51x - 5, 10x
lifts.8 1.2 × 107 1.6 × 106 mem time 43, 74 301, 96 24, 41 - - 6, 90x 0, 56x
philosophers.100 1.2 × 1019 2.7 × 104 83, 53 269, 80 341, 60 time 1150, 70 0, 24x 0, 79x - 3, 37x
philosophers.200 1.2 × 1019 1.2 × 105 mem mem 3089, 55 time time - - - -
sg-2-1-2 2.1 × 1012 4.4 × 105 mem mem 276, 96 time time - - - -
soli1 1.9 × 108 2.0 × 107 mem 1030, 26 159, 41 1871, 21 time - 6, 46x 11, 74x -
swimmingpool.5 5.9 × 108 2.2 × 106 mem 2516, 12 364, 89 time 512, 91 - 6, 90x - 1, 41x
swimmingpool.6 1.7 × 109 3.7 × 106 time time 868, 60 time 1742, 65 - - - 2, 01x
swimmingpool.7 4.2 × 109 6.6 × 106 mem time 2563, 81 time time - - - -
telephony.6 1.5 × 109 9.7 × 105 mem mem 91, 24 1222, 55 104, 58 - - 13, 40x 1, 15x
tokenring.20 2.4 × 1010 1.2 × 106 mem time 614, 06 time 2810, 64 - - - 4, 58x

shows the speedup of a 32-machine con�guration with respect to
parallel runs, thereby including the larger Petri net models. To
the best of our knowledge, we present the �rst distributed BDD
package that achieves speedup compared to parallel executions.

Compared to single-machine runs the performance drops sig-
ni�cantly when two machines are used. �is is because with two
machines the number of threads employed is insu�cient to compen-
sate for the loss of data-locality (that is, for the use of the network).
By increasing the number of threads the communicational over-
head is compensated and the performance increases compared to
sequential runs. �is is illustrated in Figure 4, in which we highlight
two BEEM models, namely adding.5 and anderson.8 (the other
models show a similar pa�ern). In both models the performance
drops when two machines are used. However, the performance
increases again when more machines and threads are added. Fig-
ures 3b and 3d show the scalability of distributed runs relative to
a se�ing with two machines (in which the In�niband network is
actively used). Likewise to Figure 4, both graphs show that the
performance increases when machines are added.

Table 1 gives statistical information of a selection of our exper-
imental results and compares it with the parallel performance of
Sylvan. Observe that none of the Sylvan runs terminated due to a
lack of memory. Instead, Sylvan applies garbage collection when-
ever needed and this eventually results in a time-out when memory
runs short. Our implementation does not yet support garbage col-
lection; the algorithm terminates when the unique table is full. We
plan to implement garbage collection in future work.

Table 1 shows that the e�ciency of Sylvan is be�er than the
e�ciency of our implementation. �is is however expected; Sylvan
is heavily optimised to maximise parallel performance in NUMA
architectures. Our focus was not to optimise for single-machine
parallelism, but rather to propose a scalable distributed implemen-
tation. In future work we aim to combine both approaches.

Nonetheless, we see that the larger models bene�t from the ex-
tra memory available in a 32-machine se�ing. For example, we
observed that some models (e.g. kanban.50 and tokenring.20)
perform be�er than Sylvan with 16 threads. Other benchmark
models, like erk.000100 and FMS.100, could be processed by our
implementation but not with Sylvan due to the lack of available
memory. �is shows that our implementation can be more e�-
cient than Sylvan when processing very large models, which is
a clear improvement on previous work on distributed symbolic
reachability.

7 CONCLUSION
We presented new algorithms for BDD-based symbolic reachabil-
ity, targeting distributed/multi-core systems, and investigated both
their parallel and distributed speedup. We carefully redesigned
the basic components for scalable BDD operations: a distributed
hash table and private-deque hierarchical work stealing. �e main
challenge in their design was to minimise the overhead of network
communication. Compared to existing work on distributed hash
tables and load balancers, we proposed lockless implementations
designed to minimise the number of networking operations. More-
over, all components have been designed to take full advantage
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of the newest networking technology. �e BDD operations them-
selves are designed to e�ectively use the idle-times of processes
and a�empt to overlap computation with communication as much
as possible. To our knowledge, we present the �rst BDD package
that targets both distributed and multi-core architectures.

We investigated the parallel and distributed speedups on a com-
pute cluster using 32 machines, each using up to 16 threads, con-
nected via an In�niband network. We obtained speedups up to
51.1x, thereby improving over existing work. As far as we know
these are higher than any speedups reported for symbolic reachabil-
ity in previous literature. Our implementation outperforms Sylvan
when memory runs short and can very well be used when the state
space does not �t into the memory of a single machine.

We are currently planning to implement garbage collection and
to integrate our algorithms into the LTSMIN toolset [21]. Moreover,
there are still many open questions concerning e�ciency improve-
ments. For example, the idea of speculative computations [9] may
also apply to our approach. Also, the scalability of alternative
decision diagrams on distributed hardware is yet unknown. Fi-
nally, our ideas may extend to accelerators and to GPU clusters.
Although there is support for running Berkeley UPC natively on
Xeon Phi’s [25] we did not yet assert its performance. Other related
work on this ma�er includes GPU state space exploration [4, 42]
which is focused on explicit-state graph searching.
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