
Solving parity games, very slowly

Tom van Dijk

Formal Methods and Tools
University of Twente, Enschede

t.vandijk@utwente.nl

Abstract. Parity games are conceptually easy to understand and might
just be solvable in polynomial time! So far, no polynomial time solution
has been discovered. Surely this fact attracts the attention of algorithm
aficionados. Quasi-polynomial time solutions have been found in the
recent decade, along with proofs that certain families of parity game
algorithms have a quasi-polynomial time lower bound. Since parity games
are in the intersection of NP and co-NP, even UP and co-UP, surely they
admit a polynomial-time solution? The quest is therefore not finished, the
question remains open: can we solve parity games in polynomial time? Or
can we not, and would that imply that parity games separate P and NP?
We focus our attention on algorithms that repeatedly partition parity
games using attractors, extended with knowledge of tangles. Tangles
are subgames that are won by one player, forcing the other player to
escape the tangle. By repeatedly partitioning the game and obtaining
new tangles from the partition, tangle learning algorithms solve parity
games. Our journey so far has focused on designing various variations
of tangle learning and subsequently exploring examples that maximally
distract and delay these tangle learning variations.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players, called
Odd and Even, play an infinite game by moving a token along the edges of the
graph, such that the successor from each vertex is chosen by the player controlling
that vertex. Each vertex is labeled with a natural number called the priority and
the winner of the play is determined by the parity of the highest priority that is
encountered infinitely often. Player Even wins if this parity is even; player Odd
wins if this parity is odd. Here is an example of a simple parity game:

5

b

6

a

1

d
3

e

2

c

2 Tom van Dijk

Vertices controlled by player Odd are shaped and vertices controlled by
player Even are shaped . In this example, player Odd can make a decision
at vertex d: play towards a and see a 6, or play towards e and avoid that 6?
Similarly, player Even can make a decision at vertex c to either play to b or to e.

It is well known that parity games admit a positional strategy for the winner.
That is, if player Even wins all plays in a parity game (or a part of a parity game),
then player Even has a strategy for its winning vertices such that all cycles in
the (sub)game are won by Even. Regardless of the choices by player Odd, every
reachable cycle is won by Even. In the above example, it is actually player Odd
who wins the entire parity game with the strategy d → e. This looks as follows:

5

b

6

a

1

d
3

e

2

c

Now there are only two simple cycles in the graph: one of priorities 5, 1, 3
and 2, the other of priorities 2 and 3. Both are won by player Odd as both have
an odd priority as their highest priority.

Parity games are pretty interesting in the area of model checking and verifi-
cation. They are used for solving synthesis problems for ω-regular specifications,
which is closely related to the model checking of ω-regular specifications, exten-
sively described in [1] by Baier and Katoen. For model checking, non-deterministic
Büchi automata suffice. For the synthesis problem of automatically constructing
an implementation that satisfies the specification, we need a deterministic game
and parity games are a popular choice.

Can we solve parity games in polynomial time? Solving parity games is
known to lie in NP ∩ co-NP. It shares this status with a number of other path-
forming graph problems, including mean payoff games and simple stochastic
games [4,5,15]. Because parity games are in NP ∩ co-NP, it is widely speculated
that a polynomial-time solution exists. Yet despite years of effort, no such solution
has been found for the parity game problem or the related problems. In recent
times, solutions have been found that have a “quasi-polynomial” upper bound,
i.e., O(nlog n), which is above polynomial but below exponential [3,19]. A proof
that parity games do not admit a polynomial-time solution would imply P ̸= NP,
so it is unlikely that this could be obtained.

Our aim is to study features of hard parity games that slow down algorithms
to their worst-case behavior. One such feature is the tangle, introduced in [6].
Tangles are roughly described as subgames where one player has a winning
strategy for all plays confined to the tangle. Tangles play a fundamental role in
parity game algorithms, but most algorithms are not explicitly aware of tangles
and can explore the same tangles repeatedly, especially in the presence of nested

Solving parity games, very slowly 3

tangles [6]. The algorithms proposed in [6] solve parity games by explicitly
computing tangles using attractor computation.

Another feature of hard parity games is that some vertices are distractions.
We developed the concept of a distraction earlier in [6,8,11]. With a distraction
we mean a vertex that a solver “assumes” to be good for one of the players,
typically because the vertex has a high even or odd priority, but that must be
avoided along some or all of the paths in order to win.

In this paper we give several examples of parity games with distractions.
One particular example is the Two Counters parity game family [8], which is an
exponential lower bound for many of the parity game algorithms implemented in
Oink [7], such as Zielonka’s recursive algorithm, priority promotion, tangle learn-
ing, the fixed point algorithms DFI and FPJ, and small progress measures [16].
This family also slows down the quasi-polynomial time progress measures algo-
rithms [14,17] and quasi-polynomial variations on Zielonka’s algorithm.

Every algorithm makes assumptions about the preference order between
vertices, i.e., which vertices are good targets to play towards and which vertices
are not. A fundamental difficulty in path-forming problems such as parity games
is that it is not known what happens “after” a vertex is visited in a play, without
investigating the rest of the parity game. This is especially difficult when many
tangles need to be explored to determine if a vertex is safe to play towards or a
distraction that leads to a losing game. For hard parity games, the decision that
a vertex is a distraction assumes that certain other vertices are not distractions.
When such a vertex is then found to be a distraction, earlier decisions are
invalidated and earlier distractions need to be reevaluated. This leads to an
exponential running time for many algorithms.

At the core of difficult to solve parity games are therefore distracted tangles,
designed in a way that forces a parity game solving algorithm to find exponentially
many tangles and “disarm” distractions exponentially often before a tangle is
found that solves the game. An ongoing challenge is to find better mechanisms to
deal with these distractions and avoid them. So far, we have worked on several
different ideas and found weaknesses in the resulting algorithms that could be
exploited to delay the algorithm repeatedly.

2 Preliminaries

Parity games

We formally define a parity game ⅁ as a tuple (V , V , E, pr) where V = V ·∪ V
is a set of n vertices partitioned into disjoint sets V controlled by player Even
and V controlled by player Odd, and E ⊆ V × V is a left-total binary relation
describing all edges. We also write E(u) for all successors of u and u → v for
v ∈ E(u). The function pr : V → {0, 1, . . . , d} assigns to each vertex a priority,
where d is the highest priority in the game. We write α ∈ { , } to denote player

or and α for the opponent of α. Given some set of vertices U , we write Uα

for all vertices in U controlled by player α.

4 Tom van Dijk

We write pr(v) for the priority of a vertex v, pr(V) for the largest (highest)
priority of a set of vertices V , and pr(⅁) for the largest priority in ⅁. Furthermore,
we write pr−1(p) for all vertices with the priority p. With pr−1() and pr−1()
we denote all vertices with an even or odd priority. Given some priority p, we
write parity(p) to mean if p is even, or if p is odd.

A play π = v0v1 . . . is an infinite sequence of vertices consistent with E, i.e.,
vi → vi+1 for all successive vertices. We denote with inf(π) the set of vertices
that occur infinitely many times in π. Player Even wins a play π if pr(inf(π)) is
even; player Odd wins if pr(inf(π)) is odd. Similarly, for any cycle in the game,
we say that player Even wins the cycle if the highest priority along the cycle is
even; or player Odd if the highest priority is odd.

A (positional) strategy σ : V → V assigns to each vertex in its domain a
single successor in E, i.e., σ ⊆ E. We refer to a strategy of player α to restrict
the domain to Vα. We write Plays(v) for the set of plays starting at vertex v.
We write Plays(v, σ) for all plays from v consistent with σ, and Plays(V, σ) for
{π ∈ Plays(v, σ) | v ∈ V }.

A basic result for parity games is that they are memoryless determined [13],
i.e., each vertex is either winning for player Even or for player Odd, and both
players have a positional strategy for their winning vertices. Player α wins vertex
v if they have a strategy σ such that every π ∈ Plays(v, σ) is winning for player
α. That is, player α has a strategy σ such that they win all cycles reachable from
v in the induced game ⅁[σ], i.e., the game where vertices in the domain of σ only
have an edge to the chosen successor in σ.

For some set of vertices U , we write E(U) to denote {v ∈ E(u) | u ∈ U}. We
call a set of vertices U α-closed if (∀u ∈ Uα.E(u)∩U ̸= ∅)∧ (∀u ∈ Uα.E(u) ⊆ U),
i.e., player α can stay in U and player α cannot leave U . A set of vertices D ⊆ V
is called a dominion of player α if D is α-closed and player α wins all plays in D.

Solving a parity game means computing the winner of each vertex (assuming
perfect play) and the strategy of each player to win these vertices.

Attractor computation

Several algorithms for solving parity games employ attractor computation. Given
a set of target vertices A, the attractor to A for player α represents those vertices
from which player α can force a visit of A. We write Attr⅁

α(A) to attract vertices
in ⅁ to A as player α, i.e., the least fixed point of

Z := A ∪ {v ∈ Vα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}

That is, starting with Z = ∅, we evaluate the above expression updating Z
until we reach a fixed point. In practice, we compute the α-attractor of A with a
backward search from A, initially setting Z := A and iteratively adding α-vertices
with a successor in Z and α-vertices with no successors outside Z. We call a set
of vertices A α-maximal if A = Attr⅁

α(A). The attractor also yields an attractor
strategy for player α as follows: when attracting a vertex v controlled by player
α to Z via an edge to a vertex u ∈ Z, then pick v → u as the strategy for v; if a

Solving parity games, very slowly 5

vertex v ∈ A has an edge to a vertex u ∈ Z, then pick v → u as the strategy for v.
It may be that some α-vertices in A do not get a strategy, i.e., when they cannot
stay in Z. In the remainder of this work, we typically use A for the target set of
vertices and Z for the attractor set. We also write AttrU

α (A) when we restrict the
α-attractor to attract from a set of vertices U only, i.e., the least fixed point of

Z := A ∪ {v ∈ Uα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Uα | E(v) ∩ U ̸= ∅ ∧ E(v) ∩ U ⊆ Z}

Typically, A ⊆ U . The idea is that we only attract vertices from the set U
towards the target set A, and that the vertices of player α may only escape to
vertices in the set U . Practical implementations of attractor computation often
only count the number of edges of player α that are not yet attracted, which
improved the computational complexity.

Attractor decomposition

Attractors are typically used to attract to a set A := pr−1(pr(⅁)), i.e., the vertices
with the highest priority in the game. By repeatedly computing this attractor
and removing it from the game, the game is decomposed into so-called regions.
We call the vertices in A the top vertices of region Z. We identify a set of open
top vertices O := {v ∈ Aα | E(v) ∩ Z = ∅} ∪ {v ∈ Aα | E(v) ̸⊆ Z}, i.e., all top
vertices controlled by α that cannot stay in Z and all top vertices controlled by
α that can leave Z. That is, the open top vertices are exactly those that are not
attracted to their own region. See for example the following decomposition:

5

b

6

a

1

d

3

e

2

c

Parity game algorithms usually prefer high priorities over low priorities, so
we begin by computing the Even attractor to vertex a. We try to attract vertices
of player Even that can play to a and vertices of player Odd that must play to
a. In this case, no vertices are attracted, since vertex d still has the option of
playing to e. We then attract for Odd to the next highest vertex, vertex b. Again,
player Even can still play from c to e so vertex c is not attracted to b and there
is no other vertex with an edge to b. Finally, we attract to vertex e, which has
the highest priority in the remaining (unpartitioned) game with priority 3, and
now vertex c has no other edge and must play to e. Vertex d is also attracted
because it is controlled by player Odd.

6 Tom van Dijk

We are interested in whether a region is closed w.r.t. a local subgame rather
than the entire game, i.e., whether player α can escape from A to this local
subgame. We distinguish these by calling one locally closed and the other globally
closed. The regions of vertices a and b are both open, as the top vertices are not
attracted to their region, but attracted to the “lower” regions. Vertex a plays
to region b, while vertex b plays to region e. Vertex e is attracted to its own
region, therefore the region is locally closed. Since the opponent, player Even,
can still leave the region by playing to vertex b, the region is not globally closed.

Computing attractors also computes attractor strategies. In the above example,
player Odd has the strategy d → e inside region e.

Tangles

A tangle is a pair (U, σ), where U ⊆ V is a nonempty set of vertices, σ : Uα → U
is a strategy for all vertices of player α, such that player α wins all cycles in the
induced subgame ⅁[U, σ], and ⅁[U, σ] is non-trivially strongly connected.

Tangles have some important properties. All vertices of the winner have a
strategy to stay inside the tangle, and the opponent must escape to avoid losing.
As a tangle is strongly connected when fixing the strategy for the winner, the
loser is free to choose any escape. If a tangle is closed, i.e., there are no escapes,
then the tangle is a dominion for player α. Furthermore, the highest priority in
the tangle is of player α.

Tangles can be nested. See for example the tangles in our example game:

5

b

6

a

1

d

3

e

2

c

We find that there are two Odd tangles in this game. The larger tangle,
{b, c, d → e, e} contains the smaller tangle {c, e}. In fact, player Odd wins all
games that stay in the smaller tangle, and player Even is forced to play from c
to b. Player Odd also wins all games that stay in the larger tangle, where player
Even has no escaping edges. In the remainder, we use this notation for tangles of
the set of vertices V , including the chosen edge in σ for vertices controlled by
the winner.

The above game has one more tangle. The tangle {a → b, b → d, d} is won
by player Even. However, while games that stay inside this tangle are won by
player Even, player Odd can simply choose to not stay inside the tangle.

In general, there can be multiple tangles for the same set of vertices U , with
different strategies. Here, we are not interested in other tangles for the same

Solving parity games, very slowly 7

vertices U and the tangle learning algorithms will only find at most a single
tangle for any set of vertices U .

Tangle attractors

Because the opponent α must escape a tangle won by player α, we can extend
attractor computation by attracting all vertices of a tangle simultaneously when
the escapes lead to Z. We update the attractor strategy with the tangle strategy.

We extend attractor computation to attract tangles, writing Attr⅁
α(A, T) to

attract vertices in ⅁ and vertices of tangles in the set of tangles T to the target
set of vertices A as player α, i.e., the least fixed point of

Z := A ∪ {v ∈ Vα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}
∪ {v ∈ U | (U, σ) ∈ T ∧ parity(pr(U)) = α ∧ (E(Uα) \ U) ⊆ Z}

In the implementation, we make use of the observation that if a α-tangle is
already partially attracted to higher α-regions, then the remainder of the tangle
is also an α-tangle. We can therefore also attract tangles when some part of them
is already in higher region(s) of player α.

We also write AttrU
α (A, T) restricted to a set of vertices U of the game, i.e.,

the least fixed point of

Z := A ∪ {v ∈ Uα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Uα | E(v) ∩ U ̸= ∅ ∧ E(v) ∩ U ⊆ Z}
∪ {v ∈ W | (W, σ) ∈ T ∧ W ⊆ U ∧ parity(pr(W)) = α

∧ E(Wα) ∩ Z ̸= ∅ ∧ (E(Wα) \ W) ∩ U ⊆ Z}

That is, the first line equals the definition of AttrU
α (A). We furthermore add

all vertices in some tangle (W, σ) ∈ T , where W is a subset of U , the winning
player is player α, there is at least one escape from the tangle to Z, and there
are no escapes to U \ Z.

Finally, we also write Attr⅁
α(A, T, ≤p) and AttrU

α (A, T, ≤p) to only attract
vertices v where pr(v) ≤ p and tangles (U, σ) where pr(U \ Z) ≤ p. This lets us
properly attract to vertices that are not the highest priority in the game, without
attracting vertices that have a higher priority.

In our example game, if we know that the tangle {c, e} exists, then we can
attract these vertices to region b, which also attracts vertex d. As a result, there
are two regions: the open region a which attracts no other vertices, and the
closed region b which attracts the rest of the game and is in fact globally closed,
meaning that all plays inside the region are won by player Odd, and player Even
is unable to leave the region.

3 Tangle learning

In earlier work, we presented the tangle learning algorithm [6]. We recall the
basic algorithm here.

8 Tom van Dijk

3 5 9

8 6 4

1 2

(a) the game

3 5 9

8 6 4

1 2

(b) iteration 1

3 5 9

8 6 4

1 2

(c) iteration 2

3 5 9

8 6 4

1 2

(d) iteration 3

3 5 9

8 6 4

1 2

(e) solved!

Fig. 1: Solving an example game with standard tangle learning.

Solving parity games, very slowly 9

The core idea is to decompose the parity game into regions using tangle-
attractor computation, then learn new tangles from the (locally) closed regions.
We repeat this process of decomposition and extracting tangles until a region is
globally closed, yielding a closed tangle. This closed tangle is now definitively
won, as are also all vertices that are attracted from the rest of the game to this
closed tangle. We remove this winning subgame and continue the process with
the remaining unsolved vertices.

We learn new tangles from locally closed regions by performing SCC decom-
position. Recall from the definition of tangles that a tangle is strongly connected
if we restrict vertices to the chosen strategy of the winner. We simply apply
Tarjan’s algorithm starting in the top vertex to find the new tangle. When
applying Tarjan’s algorithm, we only follow the edges of the strategy for vertices
of the winner.

We prove that this algorithm solves parity games in [6]. The argument is
straightforward. We can prove that the lowest region in the attractor decomposi-
tion always contains a new tangle. Since the number of tangles in a parity game
is finite, eventually a dominion must be found, therefore eventually the algorithm
solves the entire game. For any set of vertices U , the algorithm will learn at most
one tangle (U, σ).

Example 1. We illustrate how the algorithm works using an example game. Recall
that to determine whether a region is open, we only need to consider the top
vertices. See Figure 1. In this example, we refer to vertices by their priorities. In
general, vertices do not need to have unique priorities. However, w.l.o.g., we can
assume that each vertex is assigned a unique priority.

Iteration 1 We decompose the game into regions for the first time, and we do
not know any tangles yet. See Figure 1b. The first highest vertex is 9. As
player Even can still play from 5 to 3, no vertices are attracted to 9. Region 9
is open due to the edge from 9 to 4. The next highest vertex in the remaining
subgame is 8. Player Even attracts 1 towards 8 and no other vertices are
attracted: vertices 2 and 6 can still go to 4. The region is open, as player Even
cannot stay in the region from 8. The next highest vertex is 6. We attract
vertices 4 and 2 to the region; notice that player Odd cannot escape from 2
to 1, since it is in the higher region 8. Region 6 is closed, so we now learn new
tangles. When running Tarjan’s algorithm on the region, with player Even’s
vertices constricted to the strategy, we find the SCC {6, 4 → 6}. This is a
tangle with a single escape from 6 to 8. Thus the tangle would be attracted
to region 8 in the next iteration. The next highest vertex is 5. We attract 3
to this region. The region is closed, as it is the lowest region in the game. We
learn the tangle {5, 3 → 5}, which will be attracted to region 9.

Iteration 2 We decompose the game again, and we now have the two tangles
{6, 4 → 6} and {5, 3 → 5}. See Figure 1c. Due to tangle {5, 3 → 5}, vertices
8 and 6 are now attracted to region 9. Apparently playing towards 8 is not
productive for player Even. Both regions 9 and 4 are open, but the lowest
region 2 is closed and here we find a new tangle {2, 1 → 2}.

10 Tom van Dijk

Iteration 3 We decompose the game again. See Figure 1d. Now the lowest
region 4 is closed and the tangle {4 → 2, 2, 1 → 2} is closed in the entire
game, i.e., it is a dominion. We can attract from the rest of the game toward
the dominion and now find that the entire game is won by player Even as in
Figure 1e.

In this example, vertex 8 is a distraction for player Even. Even wins vertex
8, but accomplishes this by avoiding to play towards it. Ultimately, vertex 9 is a
distraction for player Odd.

4 Recursive Tangle Learning

We can extend the basic tangle learning algorithm presented above with recursive
decomposition of open regions [9]. The core idea is that when a region in tangle
learning is open, there may still be a tangle inside the region that is distracted
by the top vertex. See the following example:

8 1 2 6 5 4 7

In this example, region 6 is open but contains the tangle {1, 2 → 1} which
would be attracted to region 8. Standard tangle learning would only be able to
find this tangle after vertex 6 is attracted to region 7 after learning the tangle
{4, 5}.

Whenever a region is open, we first compute the attractor for the other player
to the top vertex, with escapes restricted to the open region. For example, if the
open region is of the Even player, then we compute the tangle attractor for Odd
to the top vertex, attracting any odd vertex from the region that can play to the
top vertex, and any even vertex that cannot stay in the region. Any vertices that
can stay in the region thus avoid the distraction.

We then recursively decompose the remainder of the open region, learn tangles
from closed regions, further recursively decompose open regions, etc.

We can even run a variation of this algorithm that only considers vertices
with an even or with an odd priority, since this mechanism is sufficient to solve
parity games, without explicitly attracting distractions. In the following, we call
this one-sided version ortl.

Example 2. We illustrate how ortl works using the example game in Figure 2.
We show the algorithm for player Even and for player Odd.

Iteration even-1. We decompose the game with only even-priority vertices as
targets. See Figure 2a. We do not attract vertex 9 to region 6, as we only
attract vertices and tangles with at most priority 6. This time, we only learn

Solving parity games, very slowly 11

3 5 9

8 6 4

1 2

(a) iteration even-1

3 5 9

8 6 4

1 2

(b) iteration even-2

3 5 9

8 6 4

1 2

(c) iteration even-3

3 5 9

8 6 4

1 2

(d) iteration odd-1

3 5 9

8 6 4

1 2

(e) iteration odd-2

3 5 9

8 6 4

1 2

(f) solution odd

Fig. 2: Solving an example game with one-sided recursive tangle learning.

12 Tom van Dijk

tangle {6, 4 → 6}. Region 8 is open, and the attractor for player Odd to 8
includes vertex 1, which has no escapes inside region 8.

Iteration even-2. See Figure 2b. Now the new tangle is attracted to region 8
and there is no tangle for player Odd to neutralize the distraction, as would
be the case with normal tangle learning. Since region 8 is open, we attract
for player Odd to the open top vertex 8. Vertex 4 can still stay in the region
by playing towards 2 and vertex 1 can do the same. Thus, we recursively
decompose the subgame of vertices 4, 2 and 1. Subregion 2 is closed and we
learn the tangle {2, 1 → 2}.

Iteration even-3. See Figure 2c. As before, but now subregion 4 is locally
closed and we obtain a dominion. Maximizing the dominion results in the
entire game won by player Even.

Iteration odd-1. We attract to vertices with an odd priority. See Figure 2d.
Region 5 is closed and we obtain tangle {5, 3 → 5}.

Iteration odd-2. Region 9 is now formed as before and is open. See Figure 2e.
If we attract for player Even towards the open top vertex 9, all vertices are
attracted, since player Odd cannot avoid top vertex 9 while staying inside
the region. No new tangles are learned, so we are done. The winning region
of player Odd is empty, and the strategy for player Even is obtained by
removing all edges from Even-controlled vertices that were avoided in the
attractors of the Odd player and by choosing the Even-attractor strategy
towards open top vertices of player Odd: the edge 1 → 8 is discarded, the
edge 4 → 6 is discarded, and the edges 5 → 9 and 8 → 3 are selected. See
Figure 2f for the result.

5 Distractions

Informally, a distraction is a vertex that at first appears to be good for a player,
but which must be avoided for one of two reasons: either all plays to the vertex
eventually reach a higher priority vertex of the opponent’s parity, or all plays to
the vertex eventually reach a winning region of the opponent. That is, a vertex v
is a distraction if there exist tangles won by player α such that

– v is attracted to a region of player α, or
– v is attracted to a dominion of player α.

If a vertex is a distraction, that does not mean that the opponent wins the vertex.
In the example at the beginning of Section 4, vertex 6 was a distraction, but was
still won by player Even.

Distractions delay parity game solvers since conclusions in earlier steps of the
algorithm can depend on the distracting vertex being won by the player. When
this assumption turns out to be false, all work based on this assumption is invalid.
For example, a tangle learning algorithm might have learned many tangles with
escapes to the distraction. If playing to the distraction is actually good for the
opponent, then these tangles are all useless. If distractions repeatedly become
distracting again, solvers can be delayed up to exponential lower bounds.

Solving parity games, very slowly 13

We say that a distraction v distracts a tangle, if that tangle contains some
distracted vertex that is attracted to v, but that can also avoid playing to v and
instead play inside the tangle. Vertex v typically has a higher priority than the
top vertex of the tangle. In order to learn the distracted tangle, the solver first
needs to “remove” the distraction. As argued in [6], tangle learning removes
distractions by learning the opponent’s tangle that attracts the distraction.

Zielonka’s recursive algorithm and priority promotion also rely on this mecha-
nism to remove distractions. This is most explicit in Zielonka’s recursive algorithm
as described in [7], as the second recursive call is only done if the opponent attracts
from the current player’s region, which is precisely when there is a distraction.
Thus, distractions make the recursive algorithm slow, especially when the game
is such that lower distractions must be removed in both recursive subgames of a
higher distraction, i.e., in the first subgame to remove the higher distraction and
in the second subgame after the distraction has been removed. If there are no
distractions in the game, then a second recursive subgame is never solved and
the recursive algorithm would run in at most n recursive calls.

The recursive tangle learning algorithm uses a different mechanism to disarm
distractions. Vertices distract in tangle learning by being top vertices of open
regions, with the distracted tangles (partially) inside these regions. If part of a
tangle is distracted by a higher vertex, then there exists tangles that attract the
rest of the distracted tangle to the distraction. After this happens, the distracted
tangle can be found by avoiding the distraction using the recursive strategy. Thus,
instead of learning the tangle that attracts the distraction, one-sided recursive
tangle learning can disarm distractions by learning tangles that extend the region
of the distraction until the distracted tangle is entirely inside, and then learn the
distracted tangle.

Every parity game algorithm has some notion of distractions and must
therefore have some method of eventually avoiding distractions. Algorithms in
the progress measures family solve parity games by equipping every vertex with
a monotonically increasing value which represents a preference ordering between
vertices. If we can force a play from some vertex v with an even priority p to some
vertex u with some even priority q via a path where all odd vertices are below
max(p, q), then we assign v a value that is strictly higher than the value of u.
Thus, the values of the vertices along good paths eventually overtake those of the
distractions, since distractions must either eventually reach higher odd priority
vertices or some odd dominion, curtailing their ability to keep increasing in value.
This is how all algorithms in the progress measures family avoid distractions.

The recursive tangle learning algorithm shares some intuition of this mecha-
nism of progress measures algorithms. Initially, the algorithm tries to reach the
distracting top vertex. Then the algorithm discards that top vertex and instead
attracts to the vertices inside the region, preferring to play to these vertices rather
than the original top vertex. Thus, the algorithm explores the decomposition
when these vertices would have a higher value than the original top vertex.

As another example, consider the game in Figure 3. Vertices a and f seem
appealing to player Even and player Odd respectively. However, if player Even

14 Tom van Dijk

2

a

0

b

0

c

1

d

1

e

3

f

⇒

2

a

0

b

0

c

1

d

1

e

3

f

Fig. 3: A game with distractions for both players.

plays from b to a, then player Odd has a strategy to win the whole game.
Similarly, if player Odd plays from e to f, then player Even has a strategy to
win the whole game. A tangle learning algorithm can either learn the tangle
{d, e → d} and attract a to region f, or it can learn the tangle {c} which is
attracted to region a, and then learn the distracted tangle {b → c, c} in the
recursive decomposition.

6 Slowly Solving Parity Games

It is not trivial to find examples of parity games that can delay parity game
algorithms to their worst-case complexity.

For some classes of parity games this is easier than for other classes. For
progress measures algorithms, simple cycles are already sufficient, as the algorithm
slowly lifts the values of vertices until they reach the highest value. It is already
more involved with strategy improvement algorithms, as evidenced by a whole
range of difficult parity games for strategy improvement algorithms, recent
examples being [12] and [10].

Difficult games for strategy improvement algorithms are typically trivial for
algorithms that use attractor computation, as the difficult games for strategy
improvement rely on the fact that improvements along paths occur step by step,
since usually only direct successors are considered, instead of entire paths or sets
of vertices as with attractor based algorithms.

For tangle learning algorithms specifically, we have found that a good coun-
terexample must fulfill a number of requirements. The following list is not
exhaustive:

1. The game should be a single strongly connected component, since SCC
decomposition can be applied to solve the parity game one bottom SCC at a
time.

2. It should take exponentially long to learn the next dominion for either player.
Usually a difficult game has one dominion for each player.

Solving parity games, very slowly 15

3. There must be distractions that are detected and then reset to become
distractions again exponentially often. That is, if distractions, after being
found out, do not become distracting again, or only polynomially often, then
the tangle learning algorithm would solve the game in polynomial time.

4. It should take exponentially long to learn the next tangle to the highest region
in the game. If this always takes polynomial time, then an algorithm could
simply maximize the highest region in polynomial time, and then recursively
solve inside the region.

5. It should take exponentially long to learn the tangle that attracts the highest
distraction in the game. Fairly obviously, if this always takes polynomial time,
then all distractions are removed after polynomially many steps, starting
with the highest distraction, and then the next highest distraction, etc.

6. From these points it follows that the structure must be such that after a
high priority distraction is avoided/attracted, lower priority distractions
should somehow be reactivated. There are multiple ways to do this, which is
demonstrated with the difficult games below.

7. Some variations of tangle learning (not necessarily known in the literature)
have various heuristics to determine whether a vertex is likely good or bad.
They invariably either make this decision too quickly, leading to slow games
where good vertices are exponentially often declared bad, or they make this
decision too slowly, leading to slow games where bad vertices are exponentially
often declared good. There are also variations that prefer “good paths” where
player Even (or Odd) dominates the path often, and in that case we simply
have a distractingly nice long path that eventually leads to a difficult to
untangle higher region of the opponent, while the dominion is small and
uninteresting, and always the last choice of the algorithm. If an algorithm is
designed to simply ignore the highest vertices in the game, assuming that
they are distractions, then a difficult game would merely be one where those
vertices are not distractions.

We can see some of these principles at work in the counterexample for the
ortl algorithm, the one-sided recursive tangle learning algorithm, which is unable
to use opponent attractors to remove distractions. See Figure 4.

We have two versions: one with and one without the vertices 18 and 19. The
mechanism is the same; the difference is that the game is an Even dominion
without vertices 18 and 19, and an Odd dominion with vertices 18 and 19. The
idea is that whenever a distraction is “defeated” by learning a tangle that escapes
the distraction, that distraction is attracted to the higher region and becomes
distracting again.

1. In the first iteration, we learn tangle {8 → 0, 0}, which will be attracted
towards 12 next. This will also attract 11 and 10.

2. In the second iteration, the recursive decomposition of region 12 contains
vertices 12, 6, 8, 0, 11, 10. We have subregions 12-10 (containing 10, 8) and
12-6 (containing 6, 0). We learn tangle {6 → 0, 0} in the subregion 12-6.

3. In the third iteration, we learn tangle {8 → 0, 6 → 0, 0} in the subregion
12-10-8. This tangle attracts towards region 14.

16 Tom van Dijk

0

2

46

8 16

1412

10 17

1513

11

18 19

Fig. 4: A exponentially hard parity game for player Even in ortl. Vertices 18
and 19 are optional and convert the game from an Even dominion to an Odd
dominion.

4. In the fourth iteration, region 14 has vertices 4, 8, 6, 0, 13, 12, 11, 10. Vertices
10 and 12 are distracting again. We learn tangle {4 → 0, 0} in subregion
14-4.

5. In the fifth iteration, we learn {8 → 0, 4 → 0, 0} in subregion 14-10-8; then
{6 → 0, 4 → 0, 0} in 14-12-6 in the sixth iteration and {8 → 0, 6 → 0, 4 →
0, 0} in 14-12-10-8 in the seventh iteration.

6. Similarly, we learn tangles in region 16 in iterations 8–15: {2, 0}, {8, 2, 0},
{6, 2, 0}, {8, 6, 2, 0}, {4, 2, 0}, {8, 4, 2, 0}, {6, 4, 2, 0}, {8, 6, 4, 2, 0}.

As is clear from the above example, the algorithm is tricked to play towards
the same distractions over and over again. However, if we let our tangle learning
algorithm attract to regions of the opponent, that is, vertices 11, 13, 15 and 17,
the parity game is quickly solved.

To delay tangle learning algorithms that use attraction to the opponent’s
regions, such as tl and rtl, one needs a different structure. In [8], we presented
a parity game called Two Counters which accomplishes this. A Two Counters
game with parameter N has 2N2 + 5N vertices, 2N distractions, and requires
2 × (2N − 1) iterations to solve. See Figure 5. There are three distractions for
each player: vertices 3, 5, 7 distract player Odd and vertices 4, 6, 8 distract player
Even. The rectangles represent bits of a binary counter; three bits for each player.
A bit is set when a tangle is learned that attracts 3 to 10, 4 to 11, 5 to 12, etc.

Consider the highest bit of player Odd, which has vertices 8 and 15. This
bit will be set when the tangle that attracts 8 to 15 is learned. This tangle is
distracted via the solid red lines by vertices 3, 5, 7. Player Odd prefers to play
towards those vertices rather than vertex 1, until the distractions are attracted
by player Even. This happens when all three bits of player Even are set.

Initially, all 6 distractions are distracting and only the lowest Even bit is
learned, as it is not distracted. This neutralizes distraction 3. In the second
iteration, the lowest bit for Odd can be learned. This neutralizes distraction 4. In
the third iteration, the second bit for Even is learned, which was only distracted

Solving parity games, very slowly 17

15

1 8

0

14

2 7

1

13

1 6

0

0

0

0

12

2 5

1

1

1

1

11

1 4

0

0

0

0

0

0

0

10

2 3

1

1

1

1

1

1

1

Fig. 5: The 3-bit Two Counters game [8].

18 Tom van Dijk

d

th 4

2

6

distraction

distraction

Fig. 6: Bit 2 of a 4-bit Two Counters game that delays rtl exponentially.

by 4. This neutralizes distraction 5. As a consequence, the tangle that attracted
4 is no longer attracted to 11. In the fourth iteration, the second bit for Odd is
learned, which was only distracted by 3 and 5. This neutralizes distraction 6. As
a consequence, the tangle that attracted 3 is no longer attracted to 10. So after
these steps, distractions 3 and 4 are distracting again.

The Two Counters game of Figure 5 works for all parity game algorithms
that neutralize distractions by attracting them to a region or dominion of the
opponent. This includes all state-of-the-art algorithms for practical games: DFI,
FPJ, priority promotion, tangle learning and Zielonka’s recursive algorithm. They
all purely rely on this mechanism and require exponential time to solve the Two
Counters games. Various other algorithms, such as those computing progress
measures, also require worst case time, but this is due to the tangles and not due
to the mechanism to avoid distractions.

The rtl algorithm solves both games of Figure 4 and Figure 5 in polynomial
time. To delay rtl exponentially often, we need to address both mechanisms.
This can be accomplished by a hybrid version of both parity games. The global
structure of the game is similar to Figure 5. Every distraction is designed to be
attracted by a tangle of the opponent that requires exponentially many steps to be
found by the recursive mechanism, and that simultaneously becomes unattractable
when higher bits of the other counter are set. The former is accomplished by the
global structure of Figure 5, the latter by the “selection chains” that give rise
to exponentially many tangles depending on the configuration of higher bits of
both players. On the game of Figure 5, both ortl and rtl would immediately
ignore the distraction and set the highest bit, as only one vertex is distracted
by several distractions. In Figure 4, each distraction distracts a different vertex.
We can use this design to modify the bits of the Two Counters game to require
many iterations to solve. See Figure 6 for an example. For presentation, we omit
the outgoing edges from the Odd-controlled vertices; they go to the higher bits
like in Figure 5; the three chains are copies.

Solving parity games, very slowly 19

7 Discussion

In this work, we have presented an overview of a few major tangle learning
variations. We have explained the principles by which these tangle learning
algorithms disarm or avoid distractions. We have seen that these algorithms
can be delayed by suitable parity game designs and have discussed some of the
underlying requirements for a parity game to be challenging.

In our current research, we study a number of different variations of tangle
learning. For example, we can use progress measures instead of priorities to
partition the parity game, essentially as if we are using tangle learning to accelerate
progress measures. This way, tangle learning can run in quasipolynomial time.

We are considering different heuristics for disabling likely distractions, in
particular we study how recent quasi-polynomial versions of Zielonka’s algorithm,
such as [18] and [2], can ignore distractions. We also have an alternative method
to ignore distractions when the lowest region of a player is open, and are studying
a method to delay this algorithm. It currently solves all known difficult parity
games in polynomial time. Considering the effort required to find the difficult
games for tangle learning and recursive tangle learning, finding a difficult parity
game example for new variations is sometimes like finding a needle in a haystack.

Nevertheless, playing in haystacks and designing suitable needles is fun! There
is always a chance to improve our understanding of what makes parity games
difficult to solve, or to find promising mechanisms to defeat certain distractions.
Our current understanding is that the nature of nested tangles interleaved with
distractions makes parity games hard to solve. It may well be possible that there
are in fact no polynomial time algorithms after all! The holy grail may be mere
fiction, a mirage in a desert, an imaginary dot on the horizon that we may never
reach. Perhaps in time, we will know the answer to this long standing open
problem. Until then, we continue solving parity games, sometimes very slowly.

References

1. Baier, C., Katoen, J.: Principles of model checking. MIT Press (2008)
2. Benerecetti, M., Dell’Erba, D., Mogavero, F., Schewe, S., Wojtczak, D.: Priority

promotion with Parysian flair. CoRR abs/2105.01738 (2021)
3. Calude, C.S., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games

in quasipolynomial time. In: STOC. pp. 252–263. ACM (2017)
4. Chatterjee, K., Fijalkow, N.: A reduction from parity games to simple stochastic

games. In: GandALF. EPTCS, vol. 54, pp. 74–86 (2011)
5. Condon, A.: The complexity of stochastic games. Inf. Comput. 96(2), 203–224

(1992)
6. van Dijk, T.: Attracting tangles to solve parity games. In: CAV (2). LNCS, vol.

10982, pp. 198–215. Springer (2018)
7. van Dijk, T.: Oink: An implementation and evaluation of modern parity game

solvers. In: TACAS (1). LNCS, vol. 10805, pp. 291–308. Springer (2018)
8. van Dijk, T.: A parity game tale of two counters. In: GandALF. EPTCS, vol. 305,

pp. 107–122 (2019)
9. van Dijk, T.: Avoiding distractions in parity games (2024), accepted.

20 Tom van Dijk

10. van Dijk, T., Loho, G., Maat, M.T.: The worst-case complexity of symmetric
strategy improvement. In: CSL. LIPIcs, vol. 288, pp. 24:1–24:19. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2024)

11. van Dijk, T., Rubbens, B.: Simple fixpoint iteration to solve parity games. In:
GandALF. EPTCS, vol. 305, pp. 123–139 (2019)

12. Disser, Y., Friedmann, O., Hopp, A.V.: An exponential lower bound for Zadeh’s
pivot rule. Math. Program. 199(1), 865–936 (2023)

13. Emerson, E.A., Jutla, C.S.: Tree automata, mu-calculus and determinacy (extended
abstract). In: FOCS. pp. 368–377. IEEE Computer Society (1991)

14. Fearnley, J., Jain, S., Schewe, S., Stephan, F., Wojtczak, D.: An ordered approach
to solving parity games in quasi polynomial time and quasi linear space. In: SPIN.
pp. 112–121. ACM (2017)

15. Halman, N.: Simple stochastic games, parity games, mean payoff games and dis-
counted payoff games are all LP-type problems. Algorithmica 49(1), 37–50 (2007)

16. Jurdzinski, M.: Small progress measures for solving parity games. In: STACS. LNCS,
vol. 1770, pp. 290–301. Springer (2000)

17. Jurdzinski, M., Lazic, R.: Succinct progress measures for solving parity games. In:
LICS. pp. 1–9. IEEE Computer Society (2017)

18. Lehtinen, K., Parys, P., Schewe, S., Wojtczak, D.: A recursive approach to solving
parity games in quasipolynomial time. Log. Methods Comput. Sci. 18(1) (2022)

19. Parys, P.: Parity games: Zielonka’s algorithm in quasi-polynomial time. In: MFCS.
LIPIcs, vol. 138, pp. 10:1–10:13. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019)

	Solving parity games, very slowly

