The Impact of
Generative Artificial Intelligence Tools
in Project-Based Learning

Tom van Dijk[O()O()fo()027536671051] and Vadim Zaytsev[o()()()f()()(]l7776474224]
Formal Methods and Tools

University of Twente, Enschede, The Netherlands

t.vandijk@utwente.nl, vadim@grammarware.net

Abstract. We investigate the potential risks and benefits for students
utilising Generative Artificial Intelligence (GAI), specifically OpenAl’s
ChatGPT and GitHub’s Copilot, to generate solutions instead of inde-
pendently creating them in the traditional educational setting. The rapid
advancements in GAI have transformed numerous domains, including
software development and software engineering education. While these
tools offer unprecedented convenience and efficiency, there are growing
concerns regarding their potential implications for academic integrity and
genuine student learning. We report on a pilot study in which 40 students,
who completed a first-semester course on object-oriented programming,
re-engage in a comparable programming project in limited time using
GALI tools. In this pilot study, we aim to assess the extent to which
students can rely on GAI tools to generate solutions for large program-
ming assignments, to investigate the impact of Al-driven code generation
on students’ understanding of fundamental programming concepts and
problem-solving abilities, and to explore the perspectives of educators and
students on the implications and long-term consequences of integrating
Al-assisted coding tools in the learning process.

1 Motivation and Background

Generative Artificial Intelligence (GAI) is a field of study that uses trained
models to generate data fragments shaped as coherent text, realistic images,
believable videos and executable code. These models can be generative adversarial
networks [17], variational autoencoders [22], diffusion models [9], autoregressive
models [20], energy-based models [41], flow-based models [35], as well as — the
most famous these days — large language models. Recent rapid advancements in
this area have made a lot of things possible: instead of requiring large volumes
of specific data, modern GAI tools can combine large volumes of generic data
they have already witnessed, with a concise definition of context, to generate all
kinds of artefacts traditionally required as deliverables in the software industry
as well as software engineering education: software, documentation, solutions
for given problems, tests for given code, presentations, critical reflections, etc.
This in turn started reshaping various professional fields from creative industries

to software development. In the literature this phenomenon is known as job
crafting [14], because it leads to employees reshaping their jobs to fit evolving
demands. Tools such as ChatGPT [7] and GitHub Copilot [16] are now capable
of generating entire blocks of text or code with minimal human intervention,
potentially accelerating productivity in a significant way.

However, in education — in particular in programming courses — this tech-
nological leap presents not just opportunities, but mostly challenges. While
GAI-powered tools can assist students in writing code, testing, debugging, doc-
umenting, even learning new concepts, they also raise fundamental questions
about academic integrity, skill acquisition, and the role of traditional learning
methods. Educators can no longer afford to ignore GAI; instead, we must critically
examine its impact and develop strategies to either integrate or regulate its use
in ways that enhance, rather than diminish, student learning. In this study, we
aim to explore how students interact with GAI in a project-based programming
course, assessing whether these tools support or hinder their understanding of
fundamental programming concepts.

There is an actively ongoing heated debate among educators and researchers
in education concerning the impact of GAI, whether it constitutes a threat or an
opportunity [4,5,40,48,49]. On one side, critics argue that GAI can undermine
academic integrity, diminish critical thinking skills, create new forms of inequality
through differential access to advanced technological tools, etc. On the other side,
proponents highlight the capacity of GAl-based systems to personalise learning
experiences beyond what is possible by human means, streamline administrative
tasks to redirect human teachers’ attention to the most impactful places, and
promote more inclusive pedagogical strategies by fully accommodating diverse
learning styles. One more complementary viewpoint is that the use of GAI tools
is not inherently bad, and potential productivity boosts it delivers are attractive,
but with one unavoidable precondition: the user must understand the output
of such GAI tools. If this prerequisite is not fulfilled, then the quality of the
result cannot be assessed and thus cannot be guaranteed. All these conflicting
perspectives revolve around concerns of bias, transparency, ethical accountability,
making it increasingly complex for educators, policy makers and researchers to
take a definitive stance on the overall impact of GAI. Ultimately, the question of
whether GAI is a threat or an opportunity remains open-ended, with the answer
depending on a long list of global aspects like its adoption in the field, as well as
seemingly small details like concrete studied topics, formulated learning goals
and attitude of both learners and teachers.

ChatGPT [7] is a large language model developed by OpenAl. It is capable
of generating text based on user prompts, and does it in a human-like fashion.
In computer science education, it can function as a virtual tutor, assisting
students with code explanations, debugging help, algorithm suggestions, as well
as full program generation. Unlike traditional search engines, ChatGPT provides
conversational, context-aware responses, making it an attractive tool for learning

— if not for teachers, then definitely tempting for students. However, its ability to
generate plausible and believable yet incorrect answers poses a challenge: without

fully understanding the underlying concepts, students may rely on it too much,
potentially weakening their problem-solving skills. This duality — being both
a powerful learning aid and a potential shortcut that bypasses learning deeper
understanding — makes ChatGPT a critical subject of study in programming
education.

Copilot [16], developed by GitHub in collaboration with OpenAl, is a GAI-
powered code completion tool designed to assist programmers by suggesting entire
functions, generating boilerplate code, and providing inline coding assistance.
Integrated directly into coding environments like Visual Studio, VS Code, IntelliJ
IDEA, Xcode and the like, Copilot offers real-time code predictions based on
the developer’s comments and existing code structure. For students, Copilot can
accelerate coding tasks, reduce syntax errors, and serve as an example-driven
learning tool. However, similar to ChatGPT, it raises concerns regarding over-
reliance and passive learning, as students may accept Al-generated solutions
without fully understanding the logic behind them. The industry’s reaction to
GitHub Copilot has been mostly positive, but unlike expert developers who use
it as a powerful code completion tool which output they can fully comprehend
before committing to it, novice developers like students still learning how to
program properly, can just end up using it as a shortcut to a somehow working
solution, bypassing the actual learning.

1.1 Problem Statement

In this paper, as well as in our programme, we rely on the paradigm of project-
based learning [15,23]. It is an educational approach where students are supposed
to gain knowledge and skills by actively engaging in real-world, complex projects
over an extended period. We see this as a programme-level implementation of
the university-wide vision of learning by interacting [47], but it is also closely
related to concepts of problem-based learning [33,52], which focuses on solving
open-ended problems while defining your own learning outcomes; challenge-
based learning [46,51], which emphasises real-world challenges which are often
interdisciplinary and by definition larger than what learners can solve, which
forces them to choose their own challenges and face them; as well as student-
driven learning [12,21], which is an approach that provides personalised learning
experiences by moving away from traditional teacher-directed models. With
some small variations (which might be very important on implementation level),
all these approaches share the line of thinking that values principles of critical
thinking, problem solving, making own decisions on the learning path, influencing
goals, outcomes, deliverables and strategies.

Traditionally, project-based learning ensures deep engagement by requiring
students to design, implement, refine and improve their own solutions. However,
the integration and/or mere existence of GAI tools challenges this paradigm. The
students who employ these tools, gain the ability to generate significant portions
of their projects with minimal effort, potentially diminishing the learning-by-
doing aspect. While GAI can serve as a tutor or assistant in overcoming technical
hurdles, its automation of cognitive processes risks turning project work into a

passive exercise of prompt engineering instead of genuine problem solving. In this
study we aim to contribute to investigation of how GAI affects traditional project-
based learning setups, determining whether it supports learning or unintentionally
undermines the development of essential programming competencies.

Since project-based learning thrives on the principle of learning-by-doing,
where students engage directly with coding challenges, wrestle with design deci-
sions, debug their own errors, refine their solutions, and learn from engaging in
all those activities with their own freshly made artefacts, using GAI to substitute
or “optimise” some of those steps naturally raises a fundamental concern. If GAI
performs the “doing”, does any meaningful learning still take place at all? When
students shift from actively constructing solutions to passively prompting a GAI
tool for answers, they may miss out on the deep engagement required to develop
core programming competencies. This shift threatens skill acquisition [18,54], as
students risk developing fluency in prompt engineering rather than algorithmic
thinking, debugging strategies, or software design principles. Beyond the ped-
agogical concerns, this raises pressing academic integrity issues [39]. If a GAI
tool generates substantial portions of a project, how do we assess a student’s
true understanding of the material? The challenge for educators is to differenti-
ate between GAl-assisted learning and GAI-driven substitution, ensuring that
students still engage in the cognitive processes that build genuine programming
expertise. Traditional plagiarism detection methods are often ineffective against
GAT-generated content [50]. Addressing these concerns requires new assessment
strategies, clear ethical guidelines, and a rethinking of how learning is measured
in a GAl-assisted educational landscape.

Lastly, the existence and commoditisation of GAI tools may or may not
enforce a fundamental reevaluation of how learning outcomes are defined and
assessed in programming education. Traditionally, assessments focus on code qual-
ity, problem-solving ability, conceptual understanding, often measured through
project work, exams, or written reports. However, when GAI can generate
functional deliverables, including code, documentation, and even debugging ex-
planations, educators must ask: are our current learning outcomes still meaningful,
or do they need to evolve? One viewpoint could be to maintain existing learning
goals but adjust assessment methods — for example, shifting toward oral exams,
in-class coding tasks, or GAl-aware rubrics that evaluate reasoning rather than
output. Another, more radical approach could be to overhaul learning objectives
entirely, recognising that in a GAl-assisted world, the emphasis should shift from
syntax and implementation toward embracing GAI collaboration, debugging
GAl-generated solutions, and verifying correctness. Whether through adaptation
or reinvention, assessment must ensure that students develop not just the ability
to produce code but also the critical thinking skills necessary to navigate a world
where GAI is an inevitable part of the software development process. We leave
this aspect as a dilemma for future work.

In this pilot study, our goals are:

¢ to assess the extent to which students can rely on GAI tools to generate
solutions for programming assignments;

o to explore the perspectives of educators and students on the implications
and long-term consequences of integrating Al-assisted coding tools in the
learning process.

We hope that these preliminary collected results will help in the near future to
make the next step to investigate the impact of Al-driven code generation on
students’ understanding of fundamental programming concepts and problem-
solving abilities.

1.2 Context

In the Bachelor programme of Technical Computer Science at the University
of Twente, object-oriented programming and software design are taught as an
introductory course in the second quartile of the first study year, in a period of
10 working weeks.

The course consists of a 4 EC part where students learn about software
modelling with UML diagrams about the development process in general, and
an 8 EC part where students learn programming using Java, study basics of
concurrency and race conditions, as well as basic networking with sockets. The
students spend roughly 7 weeks practising to reach these learning goals, and then
do a project in the remaining 3 weeks.

This project involves writing a full server-client application using Java Sockets.
This application allows users to play a simple board game over the network against
other players and against a simple computer player that is also programmed by
the students. Typical board games for this project are perfect information games
played on a rectangular grid, with few rules and simple game-over conditions, such
as Connect-Four, Pentago, Othello and others. Students typically perform this
project in pairs, although typically some students do the project by themselves
when their partner drops out.

2 Related Work

There are many GAI tools provided by different vendors, but we focus specifically
on GitHub Copilot [16] and ChatGPT [7], because they either perform competi-
tively when matched against alternatives, or outperform them significantly. Both
of them are also rather well-known and easy to setup, which in turn leads to
them being well researched [30].

GAI repeats things it learnt from the training data, which also includes
common mistakes [5], security vulnerabilities [36] and copyright violations [10].
This also leads to bias which some researchers see as hallucinations [48], while
others equate hallucination to inventing believable terms [49], which is the
opposite to repeating common mistakes. In classical terms, a GAI tool which
gives an incorrect answer because it has witnessed it often before, can be seen
as generating a false negative, while a GAI tool that produces an incorrect but
seemingly convincing answer because it finds a way to concoct a wrong but
believable chain of arguments leading to it, can be seen as false positive.

Interestingly, repeating commonly observed patterns does not mean GAI tools
like Copilot will suggest idiomatic code, at least not for JavaScript and Python [38].
Presumably this happens because there is enough non-idiomatic code in existence,
which is known from modernity research, investigating intricate patterns of
coevolution of languages and codebases [1,13]. Another issue potentially limiting
Copilot’s applicability in practice is its lack of robustness, meaning that a slight
change in its prompt might make it generate a completely different completion
code [30].

Future education is projected to include techniques like intelligence augmen-
tation [40], which will emphasise skills like prompt engineering (not just knowing
the syntax or patterns, but also conceptually “asking the right questions”), and
virtual intelligent tutoring, when an interactive LLM like ChatGPT essentially
replaces traditional teachers’ tasks like providing additional explanations and
formative feedback [40,48].

Many authors point out that (over)reliance on GAI will train learners less
in skills like critical thinking [48,49]. Some also argue that this skill needs
to be trained additionally next to similar activities like developing emotional
intelligence [18]. On the positive side, it is exactly this lack of overly critical
attitude towards its output that leads to their admitted usefulness in gathering
ideas and issues on any given topic [49]. Unfortunately, specifically in software
engineering overly creative out-of-the box solutions tend to contain more bugs
than solutions following the beaten track.

It is becoming increasingly more common to see more technically literate stu-
dents rely on GAI tools as a “clever” shortcut to completing homework effortlessly,
and less GAI aware teachers condemning these actions and generalising them to
any GAI use. Discussions of using GAI in the classroom commonly gravitate to-
wards the topic of plagiarism [49]. Some authors go as far as firmly and inherently
linking the use of ChatGPT and similar GAI tools to academic dishonesty [39].
However, even if there are some automated detection options available for the by
now hopelessly outdated ChatGPT 3.5, most of them desperately fail to detect
the use GPT 4, let alone o1, 03 or 4.5 [50].

When it comes to institutional policies, the most common one is to “ban it
till we understand it” [27], or, to put it more mildly, to have “a comprehensive
strategy to manage Al-assisted learning and control Al tool usage within edu-
cational institutions” [49]. Most such policies revolve around two principles: (1)
banning GAI by default unless explicitly permitted by a deviant teacher; and
(2) demanding explicit claims of using GAI or even not using it, possibly to
create legal liability. This is very much in line with the early attitude and policies
against using Wikipedia in classroom [19].

Yan et al list “Al-induced performance illusion” among the key challenges for
learners [54]. This is, of course, the cornerstone of the entire issue: GAI tools are
just tools which need to be learnt to be used effectively, and at their current state
their output must be examined with not much less rigour than results of one’s
own manual coding or the code of one’s junior colleague. GAI is good learning

aid and a decent completion instrument, but it has many downsides as a shortcut
since it tempts users to bypass skill acquisition.

Specifically in the context of project-based learning, there are some recent BSc
and MSc theses that attempted to enhance GAI tools’ functionality of providing
specific feedback to students while avoiding giving them solutions as such, and
at the same time explicitly teaching students how to seek such feedback [25,44].
The consensus at the moment seems to be that it is possible at least to some
extent to restrict and/or customise GAI to provide feedback, and asking for it
is definitely a teachable skill, but it remains to be seen whether such generated
feedback truly contributes positively to the learning experience. In any case,
it seems to decidedly improve peer feedback [43]. We see this line of work as
complementary to ours.

Just like students have an option to use GAI for solving assignments given
to them, teachers can use GAI to assess students’ deliverables automatically. It
is known that when it comes to essays and small study reports, GAI scores are
comparable to those given by human examiners [26,32], as long as complexity
is kept low. For project-based learning, there are some emerging frameworks
being proposed for GAl-driven automated grading [53], but as of now they lack
substantial evidence that would demonstrate the limits of their applicability.
However, from a line of research we pursue in parallel to this work, we know that
not only automated grading is prohibited by many Examination Boards, it is also
highly undesirable when stakeholders are consulted [42]. What stakeholders —
from teachers to students and from e-learning experts to educational management

— want, is automated assistance in their assessment activities, not automated
grading per se. Such assistance, of course, can be, among many other methods,
based on (G)AL

Lastly, there are some recent examples of project-based courses specifically
designed to integrate GAI models and tools into structured co-creation activi-
ties [28,37,45]. Since courses that do not undergo such redesign, tend to report
that all students use GAI anyway [6], avoiding this issue seems like a losing
battle.

3 Methodology

We have recruited students who passed the first year of the Bachelor programme in
Technical Computer Science, that is, who completed the course in question before,
including the project of implementing a board game. To level the playground
and to make sure nobody of them can reuse their own code, we have asked them
to implement a different board game.
We have divided the students up into four groups of 10 students each:

o Control group, not allowed to use any GAI tools at all

o “Copilot” group, instructed to use Copilot and not allowed to use ChatGPT

¢ “ChatGPT?” group, instructed to use ChatGPT and not allowed to use Copilot

© “Both tools” group, instructed to use both Copilot and ChatGPT

To divide the students in groups, we first asked the students to self-assess their
programming ability, their skill to use Copilot and their skill to use ChatGPT.
We then placed the students into categories and randomly split the students from
each category into the four groups.

The programming project requested from these students, was slightly more
difficult than the official project of the previous year. They were instructed to
implement the game Hex, which requires reasoning about hexagonal geometry
(rather than playing on a grid of squares), and to implement pathfinding from one
side of the board to the other. These requirements are usually deemed too difficult
for students in the first semester, since on the starting day some students do not
even know the basics of programming, but would be interesting challenges for
students who have already completed their first year. Furthermore, we instructed
students to spend in total exactly 36 hours on the programming project, which is
less than the roughly two weeks in the first semester, even accounting for student
working hours being shorter than those of professionals. If they were finished
earlier, they could spend more time polishing their implementations to improve
their grade. Students from groups with an allowed use of GAI, were instructed
to do so as much as would be reasonable to get a high grade.

During the project, the participants maintained a reflective journal, ideally
requiring about 5—10 minutes per two hours of their programming work. After
completion of the project, they self-assessed their work using the official rubric,
which is the same rubric of the project in the first-semester course. They then
peer reviewed the grading of another project. Finally, the projects were discussed
in focus group meetings.

The reflective journals, comprising 120980 words in total (after removing code
snippets, screenshots and diagrams), were read and manually tagged with the
following tags:

o Judgemental tags:
¢ joy: any expression of positive emotion, satisfaction with the result, with

GALI interaction, tool behaviour, etc, beyond “works as expected”.

¢ pain: any expression of negative emotion, frustration, dissatisfaction,
dislike of results or process steps.

¢ boost: any place in the text where students reported a significant help
or speedup caused by the use of GAIL

o waste: any place where the use of GAI was accompanied by a waste
of time and resources, including dysfunctional code, misleading designs,
bugfixes that did not result in desired effect, etc.

¢ manual: admitting manual programming (usually after a failed attempt
of GAT use or intentionally replacing it).

¢ prompt: any place where a prompt was described or quoted, or a moment
when GAI was “asked” or otherwise queried.

¢ could have: any places where GAI was used but the result was perceived
as something the user could have done themselves, or places where the
user deliberately decided to not use GAI while having that option.

o would have: any places where the user would have wanted to use GAI
but did not because it was not permitted by the rules of their group.

o

ai misuse: any description of situations where GAI was misused and/or
could have been misused.

¢ Coding activity tags:

&

&

&

project planning: taking a step back and contemplating next steps in
the implementation.

refactoring: cleaning up and otherwise improving the design of previously
written or generated code.

debugging: finding, localising, understanding or removing bugs from
existing code.

testing: checking existing code for certain properties or scenarios, writing
test cases, executing them, augmenting the test suite, etc.

reasoning: any activities related to understanding existing code, be it
for the programmer’s sake or for the sake of interpreting GAI’s output or
formulating a prompt.

documentation: anything describing manipulations with comments,
Javadoc [24], report or logbook.

¢ Design topic tags:

o

<&

o

class diagram: UML class diagrams, but only if explicitly mentioned
(discussing object-oriented design did not lead to tagging).

sequence diagram: UML sequence diagrams, but only if explicitly
mentioned (discussing system behaviour did not lead to tagging).
design pattern: usually MVC or Listener, but with some mentions of
Factory.

¢ Specific topic tags:

&

game rules: anything related to the game as such, most often some
details like the form of the hexagonal board (and determining neighbours
on such a board) or computing the winning condition.

protocol: anything related to the mandated design of the communication
between the client and the server, the kinds of commands that had to be
supported, their order, etc.

concurrency: anything related to the distributed nature of the system,
usually about choosing a threadsafe data structure or suffering from
consequences and race conditions when working with a non-threadsafe
one.

network: sending messages over the network, using sockets, occasionally
figuring out details of client-server collaboration.

user interaction: visualising the game board and communicating with
the player about their moves.

error handling: the entire spectrum from catching exceptions to just
dealing with abnormal scenarios.

JML: Java Modelling Language [8], mastering which was a part of the
learning objectives of the course, and was meant as a way to invite
students to reason about correctness of their code.

TDD: test-driven development [31], which was encouraged in the original
project (along other techniques like pair programming), and we expected
to find it back in the reports, only to be gravely disappointed. TDD

was mentioned explicitly three times, and on one additional occasion
a participant reported to write a deliberately failing test case before
implementing the next feature, which is a TDD technique.

The tagging was done following the principles of narrative research [11] and
should be taken at face value. For instance, if a student decided to explain their
debugging process in five sentences, then each of them was tagged with the
debugging tag, even when the issue was not five times larger than another
debugging case. Similarly we dealt with emotion tags: for instance, if GAI
generated dysfunctional code, simply reporting that it did not work would merit
at most a waste tag, but writing down that it “forgot” or “misunderstood” the
question or that it was not helpful, was read as opinions and marked with the
pain tag.

Additionally, the first pair of tags (joy and pain) might seem similar to the
second pair (boost and waste), and while it is true that dealing with dysfunc-
tional code often triggers negative emotions, while getting visible performance
gains usually goes the other way, this tendency was not universal. For example,
the following sentences were tagged as both pain and boost:

o I was not satisfied with this at all but gave at least the idea for the future
code.

o Though it was quite tedious having to copy paste each class, one by one, it
saved me a lot of time.

4 Results

4.1 Quantitative Findings

We originally started with 40 participants. During the study, we lost 3 participants
due to personal GAI-unrelated circumstances: two participants of the control
group did not deliver anything and were excluded from the data, one more
participant from the “both tools” group submitted a minimal journal which we
ended up including in the data just to get a few more taggings (participant 4
on Table 3). Their journal was 393 words long, which is considerably lower than
the average (mean 3184, median 2621), but not dramatically smaller than the
shortest full journal (764 words).

After self-assessment and peer review, we summarise the grades that the
projects would receive according to the rubric in Table 1. Unfortunately the
sizes of the groups are such that results are not statistically significant. Still, we
observe that groups with access to Copilot had better pass-fail outcomes, and that
the group with access to both tools had both higher average and higher median
grades. Due to the sizes of the groups, we cannot truly draw hard conclusions
about the effect on the grades.

Daily/hourly journals which students submitted, provided much more detailed
insights into their way of working and the impact of using GAI, which we will
discuss in the next section. In total, these journals contained 120980 words to

10

Average

Group Size Pass:Fail Functionality Quality Report
Control group 8 5:3 6.19 5.93 5.69
“Copilot” group 10 9:1 7.38 6.66 6.46
“ChatGPT” group 10 7:3 6.60 6.29 5.95
“Both tools” group 9 8:1 7.47 6.64 7.08

Table 1. Grades for the projects of each group, and for the Functionality, Software
quality and Report subgrades. Grades are between 1 and 10 (excellent), where 5.5 is
the minimum passing grade.

Control group L] o®e [] * ®
Copilot ® O ¢ ¢ 00 oo L J

ChatGPT - o o 00 L J

Both tools L] o O o L o o L

0,0000 0,0225 0,0450 0,0675 0,0900

Fig. 1. Strip plot of taggings per word in journals of different groups

which we added 6053 tags as described above. Each journal received 33-446
taggings (mean 159, median 129), with a density around 5 taggings per hundred
words — see Figure 1 for a strip plot of all values. Table 2 contains a summary
on the number of taggings per tag per group, and Table 3 has the full data set.

4.2 Qualitative Findings

Architectural Design vs Coding Tasks. There seems to be a sweet spot
for the use of GAI in programming a large project, where it could serve as a
powerful assistant rather than a replacement for a critically thinking software
engineer. One of the most common observations was that GAI performs poorly
at high-level design and architecture — students often found that when they
allowed GAI to dictate structure, the results were rigid, inefficient, or simply
misaligned with their intent. As a result, many study participants settled for a
hybrid approach: they took charge of the overall design process themselves but
used GAI for code generation and implementation details, which often led to

11

Tag Control Copilot ChatGPT Both
joy 6 73 61 55
pain 67 89 128 123
boost 0 159 128 112
waste 9 122 182 133
manual 16 77 119 93
prompt 2 45 293 219
could have 0 27 24 59
would have 200 51 2 2
ai misuse 6 22 41 28
class diagram 14 19 24 15
sequence diagram 7 7 13 14
design pattern 12 20 16 19
project planning 8 14 22 7
refactoring 19 36 51 48
debugging 90 84 112 110
testing 88 164 255 136
reasoning 31 44 78 64
documentation 86 114 106 90
game rules 25 41 7 57
protocol 29 61 97 49
concurrency 32 7 72 68
network 49 65 37 56
user interaction 23 27 36 41
error handling 13 40 30 31
JML 14 12 65 15
TDD 1 1 1 1

Table 2. Total number of taggings per tag (cf. section 3) per group throughout all
journals. Each of the 38 journals was written by one student participant and contains
notes on the activities they were performing during the project, as well as a critical
reflection on the entire process in the end.

more effective outcomes. This was to be expected for Copilot which is its original
intended use, but was also quite prominent for ChatGPT.

Interestingly, some students deliberately avoided GAI for simple tasks, stating
that it would likely “mess up their code” — a clear case of code alienation, a
phenomenon well known in collaborating human developers: if some developer
have strong feelings of code ownership, excessive updates to that code done
by other developers or by program transformation tools (e.g., in the context
of software migration and renovation), can destroy that ownership feeling. In
this case, GAl-generated content apparently felt foreign or unpredictable to the
developer. This was much more visible in ChatGPT-using participants, perhaps
the very nature of Copilot being integrated into the IDE alleviated some of
the code alienation feeling. Among participants using both tools, some reported
significant success and satisfaction from synergetic use, when the design was
discussed with and/or suggested by ChatGPT, after which the implementation

12

T T T T aaxn

I el le|r LT TT8T|FPT|S |OT|[9 | |¥ €| |9 g9] |¢ TIAL
slplolsitle]| |e] |v|e Tls (8 fot)| (vlsle|o|8le| |elot|t | |L|e]| |o]| |o Suypuey i011e
€ let|t |6 |1 |1 |01 ¥ ¢lelecle let|9 (e le |t | |v |1 9 (8 |[c|slg|e|T (TS |c|e |6 | uomorIdurtasn
¢ |8 |1egleT|e |T Tlele ([T |Tle|t|L|e|sTfe V{9 (g9 (€] |g|et|ot||v (8 |€ (€ |¢ |6 [ST|V L |€ fiomieu
g | |velv |11V g 19 1|9 | |et|8 |6 |oT|L |T ||T |sT|tg|e |12|9 | |0T|¢ |9 8 I8 (2] 8T |e|v |t Aousainouod
vi|elot|s (9 1€ | |9 [g |L||T |2 |8 |1g|L |& |9g|TT||TT|8 |€ [V |ST|9 |€ [T |TT|8 ||9 |V [8 |€ |V |& [& |V |¢ |1 [o00301d
|y (1T (6 [T |2 |6 L |8 || |2 |9 (9]¢ |9 |vT|se||TTle |2 |& |€ [eT|e |o |1 (¢ |[TT|v s € |7 | |o |1 |€ | so[nu oures
9 |€ |€c|ST|OT|€T|T |2 [T |0T||c | |PI|€T|€€|ST|OT|TT||V |V [8T|L |T |2&|L [ST|L |9 ||6T|L |6 |TT| |98| |¥&|OT|9 uo[jEUSWNIOP
S |g [ST|TI|S |S |2 |V |€ |6 | |7 [1T|L |eT|LE||¢ |oT|6 Llgletig |e (9| |€| |9 [LT|T (T |g |1 Suruoseas
OT|L (8€|6T|0T|ST| |7 [L |9T||c |T |L |€€|6€|6G|9€|€9||7 |CT|PT|TT|¥E|Ve|PT|0€|0T|0C|6 |8 (0T |0T|cE| |OT|8T|T Surysoy
or| |62|9T|8 |¢T|T |S |6 VT ¢ |ve|oT|v |0g|L€||€T|e |gg|e T |9T|T |TT|e |OT||6 |V |ST|6 |PI|L |4 |8 |€ |L¢ Buissnqep
¢ g |et|t [oT|v | |V |L |G 1|2 [gT|L |P1]6 Tprfr |t jojr 8|t |tf|tjefvr|elc|s|e |1t | Suriogoejol
T2 T I Tt |t|t(pleltle|t|t|e v T2 T]€ |1 | |1 | Bwuwerd 3oofoxd
0T|9 [T |T |1 e |t] g [Pt |vie |t |o o ¢ T |9 vt 9 |1 uioysed uSisop
I vo|L T|T I el I ¢l |Tle |ttt ¢ |1 |¢ ||wreaSerp sousnbos
T| |e|g|v Te el [8lor| |ttt |e ClefL| [elelt| |t|tle| ||t |v weagep ssepo
vitlele| 6le |t | |e|lt|t] [618|F |V e |68t] (gt € o |1 ¢ |t esnspu re
I L] |t ¢ |t | |v |9 |oT|¥ |9T]|€ |¢ |€T|9T|LT|0S|6 |0€|LE|8T aaey p[nom

v |c 629 (T[T [T[8 |7 |¢ el (otjp e |t e |t (v || [21]e|v e |1 |F oy pnoo
VT|0T|9G|52|92|9T|T|ST|VT|1E||€T|7 |9T[CT|0L|€€|87|2S|/eT|0g|8 I1jeIle |9 |€ ||o (e 3duroad
¢ |v [SgloT|tT|eT| |cT|S | ||V |¢ |oT|6 |ec|eT|ea|et|| (vT|oT|9 |T |8 |TT|TT|L |OT||TT|e |¢ |& [T [T | [€ |1 |9 renuew
6 |8 |c€|ST|CT|8T|E |€T|8 |CT||CT|ET|ET|PT|ST|¥T|LE|eS||L (TT|Te|S | |ST|€T|0T|6 |0T|[ST|ET| | Tt ojsem
OT|L |T€loI|vT|CcT|T |2 |¢ |6 ||0T|T |G |4 |L&|ST|TT|6T|9T|9T|€T|S | |0C|8 |og|L1|6T||€T|ce asooq
6 |9 |eT|se|gT|LTle |L |o |L ||V |€ |8 |9 |8T|¢ |s€|og||oT|9 |¥2(8 | |9 | |ee|T |0g||le |T (¢ |V [L |V |TT|TTjET|ET uyed
T (917 (6 |T1]¢ |2 | |7 || |€ (2 |2 |6 |¢ |eT|1g||e [T |2 T[T |g1| |22]|S |01]Z (4 e Kol
s[00} jog LdDreUD jorrdopn dnoi3 [oxjuo) Seq,

Table 3. All tagging statistics of this pilot study.

13

was done by Copilot with some minimal interference and/or mediation by the
human.

Another emerging challenge was the gap between having a mental idea about
software design and implementing it — and apparently translating it into code
directly was perceived to be easier than translating it into an effective GAI
prompt. This, however, might be a trainable skill which our students simply were
unprepared for. Ultimately, while GAI accelerates the transition from idea to
code, its effectiveness depends on the user’s ability to define structure, provide
clear guidance, and critically evaluate GAI-generated output. This reinforces the
idea that GAI is most useful when paired with strong foundational knowledge
and intentional design choices.

Supporting quotes:

o This proves that the most effective way to use Chat GPT is to ask him to complete
some missing parts/methods of the already ezisting code that you have created
yourself.

o I notice that a bulk of my time is being spent on establishing architecture and design
choices instead of actually programming.

o I did not find Chat GPT useful in general project designing, or class writing.

o ChatGPT does well at understanding the logic of the methods.

o Did not use chatGPT this hour because it was a very simple task and chatGPT
may destroy what I have so far.

o I did not have to ask help from Al to write out the code, as I did not have any
written description but had a mental idea of the structure.

o It did however incorrectly implement a try catch statement, in a way that Intellij
wouldn’t see as an error — so some knowledge on exception handling was necessary.

o if I hadnt known the basics of servers, I wouldn’t have been able to get that.

o GPT only gave me a skeleton of a project that was not future proof.

Acceleration vs Correctness. One of the most striking observations was
how GAI transforms the coding workflow: study participants could simply feed
requirements to a GAI tool and instantly receive functional code. In some cases,
the output was immediately usable, while in many others, it provided a good
foundation to refine. A similar way of working involved giving GAI an assessment
rubric to generate work that would score well, which occasionally succeeded but
is ultimately unrealistic for real-world software development, where predefined
grading criteria do not exist, requirements tend to creep and mature solutions to
rot.

The common theme among participants that this has led to, was the lack
of cognitive effort required. Some students found it liberating, even enjoyable,
to not have to think and still produce working code. However, this obviously
comes at a price. While GAI accelerated productivity by enabling developers
to generate more code faster, it also introduced uncertainty about correctness.
In turn, that was leading to a growing awareness that GAI-produced solutions
often require significant debugging and validation, sometimes overshadowing
time won by quickly producing working code. On several occasions participants
reported that after many prompts, the overall code quality declined, technical

14

debt accumulated rapidly, and managing GAl-induced complexity became an
issue. Some found themselves completely unable to debug GAl-produced code, as
it was too complex for them to fully grasp. Sometimes GATI’s rapid output ended
up slowing development down — one would generate large portions of code in
minutes, only to spend subsequent hours debugging unexpected issues, in worst
cases ultimately abandoning GAI solutions altogether and solving the problem
from scratch manually. These experiences highlight an ongoing tension: while
GALI reduces the barrier to writing code, it does not guarantee that the resulting
code is maintainable, understandable, or even correct.
Supporting quotes:

o First hour in, and I have just created the entire hex game.

o [ChatGPT] made the abstract class and an easy computer at first and let me decide
how to implement it, copilot then implemented it for me.

o I think ChatGPT accelerates the implementation of basic methods; it is even useful
for creating game logic. Correctness is the main problem.

o The logic from the suggestion was somewhat correct.

The quality of that I didn’t check.

Copilot is deceptive, it looks like it is helping, but at some point or when a random

bug starts popping up, you realize that the code was pretty bogus.

I overspend time on trying to figure out the problem using ChatGPT.

The tools help, but you have to be really careful in what you accept or don’t accept.

I did not have to think a second about this problem. ChatGPT solved it for me.

I would have never created such a function since it is not within my knowledge.

I feel like I would be spending more time debugging the code from Al than what I'm

now spending on writing it on my own.

When I said fix that please it gave me some optimizations which broke it completely.

I have to look into the HexGame class and I do not know the code well since most

of it is pasted from chatgpt.

o 0

[R R R

o O

The Conversational Aspect. Some students claimed that their way of working
would have been the same whether they did or did not have access to GAIL. At
least on some occasions we had to agree, up to the point where some reflective
journals looked like URL lists with links to StackOverflow, Baeldung, YouTube
and other sources of information, and the entire workflow was organised around
seeking information or even working pieces of code to use in constructing their
own system. In other cases, participants worked more in the IDE than in the
browser, and only occasionally resorted to searching the web.

Yet this was always combined with anthropomorphising of the GAI: especially
ChatGPT was repeatedly referred to with male pronouns (he/him), and the choice
of verbs — e.g., “he forgot”, “it struggles a lot”, “he knows”, “it decided/refused
to implement” or “he makes no sense” — indicated perception of these prompt
and response exchanges as true conversations. GAI became more than just a tool
and turned into a discussion partner.

This ability to use GAI to not just generate code from natural language
prompts, but also to discuss strong or weak points of envisioned design, allowed
to overcome the challenges we named in the first theme of this section. Having a

15

conversation partner with deep knowledge of concrete details of using pretty much
any library and API in existence and being capable to maintain a conversation
about any software design topic from algorithm design to code quality, also led to
contradicting the second theme (acceleration and correction). Some participants
expressed strong beliefs in correctness of GAI-produced code beyond the faith
they had in their own.

One of the three most common regrets found in the would have category
(the other two will be discussed in the next paragraph), is the lack of option
to request an explanation. At least some of the representatives of the control
group as well as the Copilot users followed the same process of “prompt-based
programming” as one would do with GAI, just by using web search, reading posts
on StackOverflow and guides on Baeldung, calling up friends, chatting them on
Discord, etc, and regretted that getting to know some API or a language feature
requires them to watch a long tutorial video instead ChatGPT just spoonfeeding
that information directly.

Supporting quotes:

o Normally I would ask ChatGPT how to generate this, but since I could not, I
resorted to watching a YouTube video.

o No doubt stackoverflow had something similar.

o I'm basically just copy pasting solutions from the internet.

o I am not sure if AI could help me with this, but of course using AI will prevent
bugs from being created in the first place.

o when I ask to compare different ways to implement a functionality, it provides a
pros and cons list on how it would affect the product.

o I deleted my program code and Copilot was able to just fill in the code as it always
wanted to.

o It was not of much help, because I didn’t trust it to give me the correct answer since
its answers seemed vague.

o Right now, I understand the code perfectly.

Where GAI Helps the Most. There are three reasonably well-defined domains
where GAI was perceived as being the most helpful both by participants who did
use it, as well as by those who were not given that option. The first two strongly
correspond to the remaining two categories of popular complaints around the
would have tag: testing and documentation.

The perception of GAI’s usefulness in testing appears to be largely illusory
rather than substantiated by concrete benefits. The ultimate purpose of software
testing is not to simply have a test suite with some high enough coverage of
existing code, but to use it to find bugs or to prevent those bugs from entering
the code in the future. While many participants — both those who used GAI
tools and those who did not — eagerly recognised the potential of GAI-produced
test cases, the data we have seen suggests that this perception is not grounded in
actual problem-solving instances. Nowhere in the reflective journals nor in focus
group discussions did students report a case where a GAI-produced test case
identified or prevented a bug that would not have been caught otherwise. Instead,
the tests produced by GAI tend to appear comprehensive and sophisticated,

16

inducing a sense of false security, and often incorporating a variety of edge cases
and structured assertions. However, in practice, these test cases are the antitheses
of TDD: they are green on arrival, since they pass successfully immediately upon
generation, and they stay green throughout their lives, rarely contributing to
meaningful debugging. This suggests that while GAI can generate plausible-
looking tests, it does not inherently improve the iterative debugging process,
and students may overestimate their effectiveness simply because they resemble
well-structured test suites. In scenarios where GAI was used to take one or two
manually written test cases to generalise and produce similar test cases covering
slightly different but related methods, it could be argued that the GAI application
was useful and justified.

Generating documentation, be it in the form of comments in the code, user
manuals or structured documentation formats such as Javadoc or JML, appears
to be a more promising application of GAI. Unlike GAI-produced test cases,
which often serve more as a decorative layer than a functional tool for debugging,
documentation produced by ChatGPT and GitHub Copilot exhibits a greater
potential for practical utility. Participants frequently reported that GAl-assisted
documentation helped them articulate design decisions better than they would
have done themselves, and generate boilerplate descriptions that they could then
refine further (or, in some cases, especially for Copilot, to go the other way and
generate code from an extensive Javadoc).

One possible explanation for this difference lies in the nature of GAI’s training
data. GAI models struggle to generate truly novel test cases because it is a
substantial reasoning challenge to find corner cases that truly need testing.
Yet, they have been trained on large corpora which included lots of well-written
technical documentation, including open-source repositories and software manuals,
conforming to industrial best practices. As a result, ChatGPT in particular
often produces coherent, contextually appropriate explanations, sometimes even
suggesting JML constraints that align with best practices in formal verification.
However, this remains an area that requires further research. Initial impressions
do suggest that GAI-produced documentation is more than just surface-level
filler, but we still need to investigate whether students actually understand and
internalise what is being generated, or if they are merely accepting GAI outputs
at face value. It is a challenge moving forward to establish whether GAI-produced
documentation enhances learning and software quality, or whether it simply
creates a false sense of completeness, much like GAI-produced test suites.

Interestingly, some participants of our study believed that the biggest gains
from GAI they had or could have had, came from implementing the game rules
themselves. The reasons might be at least partly algorithmic, since the game
we have used in this study, used a hexagonal board, and it takes quite some
design and thinking ahead to figure out what it means for places on such a
grid to be adjacent to one another or how to construct a path from one place
to another. The other explanation could be similar to a writer’s block: even
though some implementation parts are relatively easy and straightforward, it
can be considerably easier to start with some basic setup already coded, and fill

17

in the blanks incrementally, rather than to start from scratch by creating first

classes one by one. It requires much more data points that we could obtain, to

be conclusive here (and to account for confounding factors like the choice of a

programming language — since it is also possible that starting a new project in a

scripting multiparadigm language like Python would be less of a mental burden).
Supporting quotes:

o Chat GPT is a very useful tool for writing texts, providing information to a concern
in a matter of seconds and debugging code.

o I have no idea how that JML part works and I have no idea what it has written
down in the JavaDoc.

o I do believe that without the Al, the hardest part of the project would have been the
gamelogic.

o On the report side of things, I found GPT to be a lifesaver. I practically made GPT
generate all of my report.

o for the report side of things, it would be like getting homework from your friend.
All you have to do is change it a little bit and the work is completed.

o Copilot does not help me think, it helps get rid of brainless typing.

o This took like 40 minutes to complete 4 diagrams. I am shocked because I remember
this taking me a very long time 2 years ago.

o I solved the problems above myself because I did thought chatgpt would be more time
consuming.

Hallucinations are situations when GAI makes assumptions about the context
which were neither provided directly by the user, nor can be derived from
the prompts provided by the user. Initially observed in the computer vision
domain where they were seen as a positive phenomenon, allowing creative movie-
like zooming of low quality images by guessing and filling in content that was
inherently missing [3], nowadays hallucinations are synonyms for confabulations,
fabrications, delusions and other forms of falsification. We list four important
subcategories here, referring to the work of Maleki et al for a recent literature
review on the matter [29].

Confabulations are GAI’s responses which are plausible but not factually
correct. For code generation, a confabulation would be producing method calls to
methods that do not exist even though it would make sense to have methods with
those names. Fabrications are GAI’s responses where inaccurate information is
added to the context without underlying reasoning and presented as factual. For
code generation, a fabrication could lead to a GAI tool suddenly switching to a
different programming language in the middle of the session simply because the
training data indicates it more probable to have this algorithm implemented in
a language other than what was requested. Delusions are responses which are
blatantly wrong, which happens often in the context of debugging: in order to
advise the user on how to debug a certain problem, the GAI tool needs to come
up with a hypothesis about the possible cause of the observed faulty behaviour,
and since that can be far off (in addition to not being communicated properly),
it is known to send users on a wild goose chase. Finally, there is parroting
which stems from repeating patterns commonly observed in the training data

18

— in particular dangerous in the context of programming education due to its
tendency to not only easily solve all introductory programming exercises, but
also to just as easily inject common mistakes into such solutions, combining them
with very believable justifications.

Supporting quotes:

¢ (C) And then I spotted another assumption that was made by the AI and it was
wrong.

o (F) It seemed like a good solution, but when I asked it to implement it for me, it
was implemented in Python.

o (F) apparently Copilot thought I was making Checkers.

o (C/D) Much other stuff is not exactly right.

o (D) I started to believe that the more questions I ask, the dumber it gets.

o (D) Also, some tests didn’t really test what they were supposed to test.

o (P) I do notice that my code does look very bad now I use chatGPT.

Learning experience By now the paradigm shift in how students approach
programming tasks within a project when using GAI tools, should be obvious.
The key question still remains, and it is not whether students will use these
tools in the future — because they inevitably will — but rather whether they
truly learn anything from them or while using them. Do students gain a deeper
understanding of programming concepts, or does GAI obscure the cognitive
processes necessary for effective learning? Do we, as educators, need to redefine
what we teach, or simply adjust how we teach it?

Traditionally, project-based learning [15] has been rooted in active engagement:
students learn by struggling through problems by themselves, making mistakes,
debugging, iterating on their solutions, and getting timely actionable feedback to
let them to keep going. The introduction of GAI shifts the balance: students are
now less engaged in the doing and more engaged in the guiding of a GAI tool
to do it for them. Such students are focused on the ultimate goal — getting the
project to work, submitting it on time and getting a good grade — even though
for teachers this has never been the real goal, and within the learning-by-doing
paradigm the project deliverable is always secondary to the process of doing it.

We did have participants that reported that they did not feel they missed much
from the learning experience, strongly suggesting that GAI merely accelerated
parts of the project rather than replacing genuine problem-solving. Others,
however, noted that they had a false sense of efficiency, since they assumed Al
would make things easier, only to realise later that they ended up with code they
do not understand and hence have no true control over. The most recurring theme
was one of over-reliance: students who leaned too heavily on GAI tools, often
found themselves unable to reason about their own code whenever problems arose.
Ironically, proceeding that way makes them go the full circle, since spending
too much time on understanding or debugging GAI code the first time, makes
them less eager to rely on it for anything in the next steps in fear that their
productivity will take another hit.

In this sense, GAI introduces a new failure mode in programming education:
instead of struggling with syntax and logic, students struggle with interpreting

19

GAI-produced solutions. This is a new kind of problem, one that traditional
programming education does not prepare students for. However, this is far from
a universal experience. Some students did learn from GAI, especially when they
approached it with a genuine desire to understand. Those who treated GAI as a
tutor rather than an oracle — questioning its responses, verifying its correctness,
iterating on its suggestions, persisting in demanding justifications and detailed
adjustments — reported a meaningful learning experience.
Supporting quotes:

I don’t think I missed too much in terms of the learning experience.

Very easy to trust ChatGPT too much, which I have done again.

I realized that working with ChatGPT is actually quite difficult.

1 simply have no idea how to even ask chatGPT for advice, as that would take

explaining my entire codebase.

o I also have no idea how the function works so I will have to check that to fix it.
Maybe I should ask chatGPT again.

o This is probably because I thought it would be quick an easy using Al, without it I
would have first assessed what was actually necessary.

o Maybe I have become over reliant on the tool, because not using it probably made
this go way faster.

o It’s much faster to do this without Al and I get better results.

o I didn’t try asking ChatGPT to do that, as I considered it would have taken me
more time to explain exactly what I wanted, and even then it would have probably
required a lot of changes from my side.

o I would thus think that Copilot did not prevent me from learning about coding it

just took over the easy duties while leaving the more complicated work for me to

figure out.

I mostly did not have to think at all which did have some drawbacks.

Coding wise I did not learn much, I do not know a lot about my own project.

You can learn from chatgpt if you genuinely want to.

This is definitely not good practice, but let’s hope that this works.

o000

5 Implications

5.1 GAI as a Tutor

One of the most immediate and apparent uses of GAI in education is as an
on-demand tutor, capable of providing explanations, clarifications, technical
details at any time of day. Unlike human instructors, GAI does not have office
hours, does not get tired, impatient, always delivers responses within seconds
or minutes, and never complains. This convenience is undeniably valuable, and
students struggling with a difficult concept or an unfamiliar API can quickly
obtain an explanation without waiting for a scheduled class or response from a
peer. The ability to receive immediate feedback allows for just-in-time learning,
potentially making students more independent and resourceful.

However, students have traditionally relied on teachers and textbooks as
authoritative sources, and they still expect correctness from those they learn from.
GAIT models do not always distinguish between correct, misleading, and outright

20

false information, and in sections above we provided much evidence of all these
expectations being violated. A student who assumes that GAl-produced responses
are always accurate, may unknowingly build a foundation of misconceptions,
particularly when GAI confidently hallucinates plausible-sounding but incorrect
explanations. If we assume that human tutors know their students and match
their level of understanding as well as increasingly probe them for misconceptions,
then GAI in its current forms fails quite decisively, lacking the ability to take
enough context into account, be it about a particular student’s needs or about
“remembering” previous conversations and consistently building up from those in
an informed and pedagogically sound way.

Beyond accuracy concerns, the ease of access to information may fundamen-
tally alter how students engage with learning. Just as widespread calculator use
has made people less proficient at mental arithmetic, and reliance on digital
devices has diminished handwriting skills, continuous GAl-assisted explanations
could lead to a decline in deep knowledge acquisition. Students may grow accus-
tomed to looking up facts and reasoning rather than internalising them, reducing
their ability to recall and apply concepts without GAI assistance. This could
lead to a generation of programmers who can efficiently retrieve information
but struggle to reason through problems independently. Some claim that this
milestone has already been reached with developers who spend more working
hours on StackOverflow and YouTube than in the actual editor, but extensive
GALI tutoring institutionalises this.

Despite these concerns, GAI as a tutor has clear potential to enhance learning
when used effectively. A student who actively engages with GAI explanations,
cross-references multiple sources, and critically evaluates responses, may actually
develop a stronger conceptual foundation than one relying solely on lectures
and textbooks. The key difference will likely be in how GAI is used rather than
whether it is available, and further research will be needed to determine whether
it ultimately enhances or erodes understanding in the long run.

5.2 GAI as a Tool

In the ethics research community, the discussion whether GAI is “just a tool” or
rather “more than a tool”, is still ongoing [2]. However, if for the purpose of this
section we assume that it is just a powerful tool, and we keep the educational
model which relies on a guidance of a human instructor, then GAI would not
replace the teacher but instead augments the learning process, much like an IDE
that speeds up routine tasks like performing simple refactorings and provides
immediate feedback in contexts like regression testing. This shifts the nature
of programming education: not by making traditional coding obsolete, but by
requiring a new set of complementary skills. Just as using a calculator does not
eliminate the need for mathematical reasoning, leveraging GAI tools does not
mean students can ignore fundamental programming concepts. However, the way
they engage with those concepts, may change significantly.

GALI tools, just like powerful IDEs, are tools not just for making code run,
like compilers are, or tools for keeping track of the code, like version control

21

systems. In addition to all that, they are decision-making aids, influencing how
developers (and students as future developers) approach problems, how they
structure their code, and even how they understand the boundaries of what
is possible altogether. Because of this, GAI literacy becomes an essential skill.
Students must learn to critically assess GAI-produced suggestions, recognise
when they are incorrect or inefficient, refine their prompts to get meaningful
results. Prompt engineering as the ability to formulate effective queries that yield
useful GAI responses, is already becoming a crucial skill in the industry, and
education must adapt accordingly. Ignoring this reality would be like insisting
that students write assembly code or use punch cards when the world has long
since moved to high-level languages and colour displays.

Modern software developers do not need to know assembly to be competent
programmers, and many never write raw SQL because ORMs abstract away the
details. If GAl-assisted coding becomes the norm, should we really resist it, or
should we accept that programming is evolving? There is an argument to be made
that, as long as students develop an understanding of problem-solving, software
architecture, and debugging, the method of implementation might be secondary
after all. There is still plenty to teach beyond writing code: understanding what
to build, why certain approaches work, how to make existing systems better, etc.
Even responsible GAI usage needs to be explicitly taught. Without structured
guidance, students will inevitably use GAI anyway, but without learning where
to trust it, how to verify it, and when to rely on their own skills instead. If we
fail to integrate GAI into education, we do not prevent students from using it,
we only ensure that they use it uncontrollably.

5.3 Skills GAI Cannot Replace

If GAl-assisted programming is here to stay, then perhaps education should
specifically focus on what GAI cannot do. While GAI tools can certainly generate
code, explanations, and even documentation, it does not reason in a critical way,
verify correctness, or make decisions based on deeper understanding. If students
are to become effective programmers, they must develop these skills themselves,
not by passively consuming AT outputs, but by actively questioning, refining,
and integrating them into a broader problem-solving process.

One key area where we found this to be evident, is documentation. Many
students in our study postponed writing any kind of documentation (not just the
report, but also code comments and Javadoc specifications) until the very end
of the project, treating it as a separate, optional step to improve their grades,
rather than an integral part of the development process. GAI makes it easy to
generate documentation, but this automation hides its true purpose. Of course,
documenting code is not just about explaining it to others, but mostly about
clarifying ideas for oneself. When developers write documentation alongside their
code, they engage in an essential cognitive process: articulating design choices,
recognising inconsistencies, ensuring that future modifications remain manageable.
If students only document their work at the last minute, whether manually or

22

via GAI, they miss the opportunity to use documentation as a real-time thinking
aid rather than a retroactive justification.

The same applies to testing, which very much fell under the same bus. When
done at the end of a project, testing serves only as an a posteriori bug-finding
mechanism, revealing last-minute issues that must be patched before deployment.
However, when testing is integrated throughout development, it becomes a tool
for confidence and flexibility. Writing tests early allows programmers to refactor
their code more freely, knowing that mistakes will be caught before they become
deeply embedded. GAI can certainly generate test cases, but if students do not
internalise why testing matters and at which point in their project is it meaningful,
they risk falling into the same pattern of only testing at the last minute, rather
than using tests as a way to find bugs early and guide development from the
start.

Perhaps the most future proof skill is debugging GAI mistakes. Traditional
debugging involves tracing logical errors, identifying faulty assumptions, and
methodically isolating the source of a problem [55]. GAlI-assisted programming
introduces an entirely new category of debugging: correcting errors in GAI code
that looks correct but is subtly wrong. This is an advanced skill, requiring not
just programming knowledge but an understanding of how GAI makes mistakes,
how to recognise hallucinations, and how to verify GAI outputs instead of blindly
trusting them. Without explicit training, students struggle to identify these
issues, much like novice programmers initially struggle with debugging their own
mistakes.

There are enough skills we can cover in programming education, even if all
the ones where GAI has any significant success, are eliminated. Self-explanation,
project and time management, structured thinking, correctness verification,
assumption validation, detecting faulty reasoning, and many others. This could
be seen as an opportunity to redirect our focus to produce relevant experts in
the GAl-driven world.

5.4 GAI and Assessment

The first detected instances of a student producing GAl-generated code, were
instinctively considered academic misconduct: you did not write this code, you
do not deserve the grade, come back and redo, or else. Our study has provided
a lot of evidence in support of that. For instance, we see that GAI tools do
impact the grades in a significant way (with Copilot having the most impact on
getting higher grades for the code, and ChatGPT having the most impact on the
quality of the documentation). As another concrete example, we see that if given
a chance, students generate project documentation, including drawing diagrams,
instead of making it manually, and do that at the last possible moment. This
supports that the assessment methods of the pre-GAI world, where students were
expected to independently produce every line of code, every report, and every
test case, themselves, are based on an obsolete assumption.

Declaring any use of GAI as academic misconduct is not a viable solution.
Students will use GAI regardless of official policies, just as they already use

23

StackOverflow, online documentation, automated debugging tools, plugins. Blan-
ket prohibitions are not only unenforceable but also misguided, since GAI is
quickly becoming an integral part of professional software development, and can
be considered an important career skill. Thus, the position of many teachers has
gradually shifted towards a much more timid demand that one must understand
the code they submit, or be able to explain how it works, or any combination of
those.

If our module is called Software Systems, ideally we would like to test whether
students produced a well designed, cleanly coded, functional solution, which they
can also maintain and evolve. We would like to assign higher grades to students
who excel at those criteria, not necessarily differentiating between those that
used more or less tools to arrive at that skillset. This is not a new issue: in group
projects, for example, freeriding [34] has always been a challenge, where weaker
students can benefit from stronger teammates without contributing equally. GAI
extends this problem beyond group work: now, an individual student can appear
more competent than they actually are, simply by prompting GAI to do the hard
work for them.

Some possible alternative assessment methods include:

¢ Oral exams, where students must defend their code, explaining design choices
and debugging steps.

o Project exams, where students answer questions about their submitted work,
ensuring they understand the details.

¢ In-class coding tasks, where students work under controlled conditions, demon-
strating their ability to think through problems independently.

¢ Live demonstrations and walkthroughs, requiring students to articulate their
approach and showcase their decision-making process.

These approaches shift the focus away from final deliverables and toward
process, reasoning and understanding. Rather than assessing whether a project
“just works”, exams and interactive assessments ensure that students have actually
engaged with and learned from the experience. Many institutions are experiment-
ing now with these assessment forms, as well as with a range of university-level
and programme-level policies. At least some of those are simply transparency
requirements, demanding that students disclose when and how they used GAI,
which is a very legalese, shortsighted and bureaucratic way, since it again takes
away the focus from learning how to make a good software system to learning how
to rehearse the steps of using one of the many tools in one’s toolbox. Future proof
rethinking of educational programming projects may focus less on writing raw
code from scratch and more on interpreting, refining, debugging and integrating
GATl-generated solutions. The role of the educator, then, shifts from evaluating
code quality to evaluating how students engage with GAI responsibly, which we
covered in the previous sections.

24

6 Conclusion

Our study concerned the impact of GAI tools on programming education, specif-
ically in the context of project-based learning which implies large holistically
assessed take-home assignments. Our general conclusion is that students who
had access to OpenAl ChatGPT and GitHub Copilot, generally produced higher-
quality code and documentation, but their learning experience was noticeably
altered. While some claimed that GAI simply accelerated their work without
diminishing their understanding, others found themselves struggling to engage
meaningfully with the GAl-produced code, raising concerns about their learning
and cognitive development.

One of the most significant takeaways is that GAI use is unavoidable. When
explicitly permitted, students engaged fully and explored various ways to utilise
GAI tools. When not permitted, they regretted the restriction — Copilot users
tended to miss some features only provided by ChatGPT, and control group
missed both; Copilot was never explicitly missed in student journals, but repeat-
edly reported as useful even in the presence of ChatGPT. Participants of the
control group loathed their limitations and resorted to emulating the same expe-
rience with Google Search, StackOveflow and similar pre-GAl-era means. This
suggests that educational institutions must adapt assessment methods, ensuring
that learning is measured through understanding, reasoning, and process, rather
than simply evaluating final project outcomes. Traditional grading models are
increasingly ill-suited for a world where GAI can generate functionally correct
solutions with minimal human intervention.

Instead of resisting GAI, programming education must shift focus toward
teaching what GAI cannot do fully: critical thinking, debugging, testing, struc-
tured problem-solving, software design, reasoning and verification. We hope
that the detailed breakdown of our findings in subsection 4.2 will support our
colleagues and fellow educators in making informed decisions and taking sensible
steps towards future proof education and assessment.

Ultimately, GAI is neither a shortcut nor a replacement for learning. It is a
tool that can either enhance or erode education, depending on how it is integrated.
If used thoughtfully, it has the potential to make students faster, more efficient,
and better-prepared for a career in the software industry. If used recklessly, it risks
producing programmers who can generate code but cannot understand, debug,
or improve it. The future of programming education will depend on how well we
strike this balance, ensuring that GAI serves as an amplifier of human intelligence
rather than a crutch that weakens it. Much larger studies are needed as further
research to refine strategies for GAI integration, assess long-term impacts on
learning outcomes, and ensure that our education continues to produce competent
software engineers.

References

1. Admiraal, C., van den Brink, W., Gerhold, M., Zaytsev, V., Zubcu, C.: Deriving
Modernity Signatures of Codebases with Static Analysis. Special Issue in the Journal

25

10.

11.

of Systems and Software: Open Science in Software Engineering Research (JSS)
211 (May 2024). https://doi.org/10.1016/].jss.2024.111973

. Babushkina, D.: Are We Justified Attributing a Mistake in Diagnosis to an Al

Diagnostic System? AI Ethics 3(2), 567-584 (2023). https://doi.org/10.1007/
S43681-022-00189-X

. Baker, S., Kanade, T.: Hallucinating Faces. In: Proceedings of the Fourth IEEE

International Conference on Automatic Face and Gesture Recognition. pp. 83-88
(2000). https://doi.org/10.1109/AFGR.2000.840616

. Bender, E.M., Gebru, T., McMillan-Major, A., Shmitchell, S.: On the Dangers

of Stochastic Parrots: Can Language Models Be Too Big? In: Proceedings of the
Conference on Fairness, Accountability, and Transparency. pp. 610-623. FAccT,
ACM (2021). https://doi.org/10.1145/3442188.3445922

. Bommasani, R., Hudson, D.A., Adeli, E., Altman, R., Arora, S., von Arx, S.,

Bernstein, M.S., Bohg, J., Bosselut, A., Brunskill, E., Brynjolfsson, E., Buch, S.,
Card, D., Castellon, R., Chatterji, N., Chen, A., Creel, K., Davis, J.Q., Demszky, D.,
Donahue, C., Doumbouya, M., Durmus, E., Ermon, S., Etchemendy, J., Ethayarajh,
K., Fei-Fei, L., Finn, C., Gale, T., Gillespie, L., Goel, K., Goodman, N., Grossman,
S., Guha, N., Hashimoto, T., Henderson, P., Hewitt, J., Ho, D.E., Hong, J., Hsu, K.,
Huang, J., Icard, T., Jain, S., Jurafsky, D., Kalluri, P., Karamcheti, S., Keeling, G.,
Khani, F., Khattab, O., Koh, P.W., Krass, M., Krishna, R., Kuditipudi, R., Kumar,
A., Ladhak, F., Lee, M., Lee, T., Leskovec, J., Levent, 1., Li, X.L., Li, X., Ma, T\,
Malik, A., Manning, C.D., Mirchandani, S., Mitchell, E., Munyikwa, Z., Nair, S.,
Narayan, A., Narayanan, D., Newman, B., Nie, A., Niebles, J.C., Nilforoshan, H.,
Nyarko, J., Ogut, G., Orr, L., Papadimitriou, I., Park, J.S., Piech, C., Portelance,
E., Potts, C., Raghunathan, A., Reich, R., Ren, H., Rong, F., Roohani, Y., Ruiz, C.,
Ryan, J., Ré, C., Sadigh, D., Sagawa, S., Santhanam, K., Shih, A., Srinivasan, K.,
Tamkin, A., Taori, R., Thomas, A.W., Tramer, F., Wang, R.E., Wang, W., Wu, B.,
Wu, J., Wu, Y., Xie, S.M., Yasunaga, M., You, J., Zaharia, M., Zhang, M., Zhang,
T., Zhang, X., Zhang, Y., Zheng, L., Zhou, K., Liang, P.: On the Opportunities
and Risks of Foundation Models (2022), https://arxiv.org/abs/2108.07258
Boughattas, N., Neji, W., Ziadi, F.: Project Based Assessment in the Era of Gener-
ative AI-Challenges and Opportunities. In: Proceedings of the 20th International
CDIO Conference. pp. 347-356 (2024), https://www.cdio.org/sites/default/files/
documents/360__CDI0%202024%20Proceedings.pdf

Brockman, G., Lightcap, B., Murati, M., Clark, C.: OpenAl ChatGPT. https:
//chat.openai.com/chat/ (2022)

Burdy, L., Cheon, Y., Cok, D.R., Ernst, M.D., Kiniry, J.R., Leavens, G.T., Leino,
K.R.M., Poll, E.: An Overview of JML Tools and Applications. International
Journal on Software Tools for Technology Transfer 7(3), 212-232 (Jun 2005).
https://doi.org/10.1007/s10009-004-0167-4

Cao, H., Tan, C., Gao, Z., Xu, Y., Chen, G., Heng, P.A., Li, S.Z.: A Survey
on Generative Diffusion Models. IEEE Transactions on Knowledge and Data
Engineering 36(7), 2814-2830 (2024). https://doi.org/10.1109/TKDE.2024.3361474
Ciniselli, M., Pascarella, L., Bavota, G.: To What Extent do Deep Learning-based
Code Recommenders Generate Predictions by Cloning Code from the Training Set?
(2022), https://arxiv.org/abs/2204.06894

Clandinin, D.J.; Caine, V.: Narrative Inquiry. In: Reviewing Qualitative Research
in the Social Sciences, pp. 178-191. Routledge (2013). https://doi.org/10.4135/
9781412963909.n275

26

https://doi.org/10.1016/j.jss.2024.111973
https://doi.org/10.1016/j.jss.2024.111973
https://doi.org/10.1007/S43681-022-00189-X
https://doi.org/10.1007/S43681-022-00189-X
https://doi.org/10.1007/S43681-022-00189-X
https://doi.org/10.1007/S43681-022-00189-X
https://doi.org/10.1109/AFGR.2000.840616
https://doi.org/10.1109/AFGR.2000.840616
https://doi.org/10.1145/3442188.3445922
https://doi.org/10.1145/3442188.3445922
https://arxiv.org/abs/2108.07258
https://www.cdio.org/sites/default/files/documents/360_CDIO%202024%20Proceedings.pdf
https://www.cdio.org/sites/default/files/documents/360_CDIO%202024%20Proceedings.pdf
https://chat.openai.com/chat/
https://chat.openai.com/chat/
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1007/s10009-004-0167-4
https://doi.org/10.1109/TKDE.2024.3361474
https://doi.org/10.1109/TKDE.2024.3361474
https://arxiv.org/abs/2204.06894
https://doi.org/10.4135/9781412963909.n275
https://doi.org/10.4135/9781412963909.n275
https://doi.org/10.4135/9781412963909.n275
https://doi.org/10.4135/9781412963909.n275

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

Denny, P., Luxton-Reilly, A., Tempero, E., Hendrickx, J.: CodeWrite: Supporting
Student-Driven Practice of Java. In: Proceedings of the 42nd ACM Technical
Symposium on Computer Science Education. p. 471-476. SIGCSE, ACM (2011).
https://doi.org/10.1145/1953163.1953299

Farooq, A., Zaytsev, V.: There Is More Than One Way to Zen Your Python. In:
Visser, E., Kolovos, D., Séderberg, E. (eds.) Proceedings of the 14th International
Conference on Software Language Engineering (SLE). pp. 68-82. ACM (2021).
https://doi.org/10.1145/3486608.3486909

Freise, L.R., Bruhin, O., Ritz, E., Li, M.M., Leimeister, J.M.: Code and Craft: How
Generative Al Tools Facilitate Job Crafting in Software Development. Available at
SSRN 4974037 (2024), https://ssrn.com/abstract=4974037

Gary, K.: Project-Based Learning. Computer 48(9), 98-100 (2015). https://doi.
org/10.1109/MC.2015.268

GitHub: GitHub Copilot — Your Al Pair Programmer. https://github.com/features/
copilot (2021)

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S.,
Courville, A., Bengio, Y.: Generative Adversarial Networks. Communications of
the ACM 63(11), 139-144 (Oct 2020). https://doi.org/10.1145 /3422622

Hoog, O., Ljungqvist, P.: Competence Dynamics in the Age of Al: A Qualitative
Study Examining How Generative Al Alters the Relevance and Need of Competences
among High-Skilled Workers. Master’s thesis, Graduate School, School of Business,
Economics and Law, University of Gothenburg (2024), https://hdl.handle.net/2077/
82431

Hough, L.: Truce Be Told. Harward Ed. https://www.gse.harvard.edu/ideas/
ed-magazine/11/09/truce-be-told (Sep 2011)

Hytti, H., Takalo, R., Thalainen, H.: Tutorial on Multivariate Autoregressive Mod-
elling. Journal of Clinical Monitoring and Computing 20(2), 101-108 (Apr 2006).
https://doi.org/10.1007/s10877-006-9013-4

Kallick, B., Zmuda, A.: Orchestrating the Move to Student-Driven Learning. Edu-
cational Leadership 74(6), 53-57 (2017), https://www.learningpersonalized.com/
wp-content /uploads/2017/07/Article-Orchestrating-the-Move_ KallickZmuda.pdf
Kingma, D.P., Welling, M.: Auto-Encoding Variational Bayes (2022), https://arxiv.
org/abs/1312.6114

Kokotsaki, D., Menzies, V., Wiggins, A.: Project-Based Learning: A Review of
the Literature. Improving Schools 19(3), 267-277 (2016). https://doi.org/10.1177/
1365480216659733

Kramer, D.: API Documentation from Source Code Comments: A Case Study of
Javadoc. In: Proceedings of the 17th Annual International Conference on Com-
puter Documentation. p. 147-153. SIGDOC, ACM (1999). https://doi.org/10.1145/
318372.318577

Kusam, V.A.: Generative-Al Assisted Feedback Provisioning for Project-based
Learning in CS Education. Master’s thesis, University of Michigan—-Dearborn,
Dearborn, USA (2024). https://doi.org/10.7302/22651

Kusuma, J.S., Halim, K., Pranoto, E.J.P., Kanigoro, B., Irwansyah, E.: Automated
Essay Scoring Using Machine Learning. In: Proceedings of the Fouth International
Conference on Cybernetics and Intelligent System. pp. 1-5. ICORIS (2022). https:
//doi.org/10.1109/ICORIS56080.2022.10031338

Lau, S., Guo, P.: From “Ban It Till We Understand It” to “Resistance is Futile”:
How University Programming Instructors Plan to Adapt as More Students Use Al
Code Generation and Explanation Tools such as ChatGPT and GitHub Copilot.

27

https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/1953163.1953299
https://doi.org/10.1145/3486608.3486909
https://doi.org/10.1145/3486608.3486909
https://ssrn.com/abstract=4974037
https://doi.org/10.1109/MC.2015.268
https://doi.org/10.1109/MC.2015.268
https://doi.org/10.1109/MC.2015.268
https://doi.org/10.1109/MC.2015.268
https://github.com/features/copilot
https://github.com/features/copilot
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://hdl.handle.net/2077/82431
https://hdl.handle.net/2077/82431
https://www.gse.harvard.edu/ideas/ed-magazine/11/09/truce-be-told
https://www.gse.harvard.edu/ideas/ed-magazine/11/09/truce-be-told
https://doi.org/10.1007/s10877-006-9013-4
https://doi.org/10.1007/s10877-006-9013-4
https://www.learningpersonalized.com/wp-content/uploads/2017/07/Article-Orchestrating-the-Move_KallickZmuda.pdf
https://www.learningpersonalized.com/wp-content/uploads/2017/07/Article-Orchestrating-the-Move_KallickZmuda.pdf
https://arxiv.org/abs/1312.6114
https://arxiv.org/abs/1312.6114
https://doi.org/10.1177/1365480216659733
https://doi.org/10.1177/1365480216659733
https://doi.org/10.1177/1365480216659733
https://doi.org/10.1177/1365480216659733
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/318372.318577
https://doi.org/10.1145/318372.318577
https://doi.org/10.7302/22651
https://doi.org/10.7302/22651
https://doi.org/10.1109/ICORIS56080.2022.10031338
https://doi.org/10.1109/ICORIS56080.2022.10031338
https://doi.org/10.1109/ICORIS56080.2022.10031338
https://doi.org/10.1109/ICORIS56080.2022.10031338

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

In: Proceedings of the ACM Conference on International Computing Education
Research — Volume 1. p. 106-121. ICER, ACM (2023). https://doi.org/10.1145/
3568813.3600138

Leung, J.K.L.: Applied Generative Al for Interdisciplinary Projects. Effective
Practices in Al Literacy Education: Case Studies and Reflections pp. 179-188
(2024). https://doi.org/10.1108,/978-1-83608-852-320241019

Maleki, N., Padmanabhan, B., Dutta, K.: Al Hallucinations: A Misnomer Worth
Clarifying. In: Proceedings of the IEEE Conference on Artificial Intelligence (CAI).
pp. 133-138 (2024). https://doi.org/10.1109/CAI159869.2024.00033

Mastropaolo, A., Pascarella, L., Guglielmi, E., Ciniselli, M., Scalabrino, S., Oliveto,
R., Bavota, G.: On the Robustness of Code Generation Techniques: An Empirical
Study on GitHub Copilot . In: Proceedings of the 45th IEEE/ACM International
Conference on Software Engineering (ICSE). pp. 2149-2160. IEEE Computer Society
(May 2023). https://doi.org/10.1109/ICSE48619.2023.00181

Newkirk, J., Vorontsov, A.A.: Test-Driven Development in Microsoft .NET. Mi-
crosoft Press, Redmond, WA (2004)

Niszczota, P., Conway, P.: Judgments of Research Co-created by Generative Al:
Experimental Evidence (2023), https://arxiv.org/abs/2305.11873

O’Grady, M.J.: Practical Problem-Based Learning in Computing Education. ACM
Transactions on Computing Education (TOCE) 12(3) (Jul 2012). https://doi.org/
10.1145/2275597.2275599

Palfrey, T.R., Rosenthal, H.: Testing Game-Theoretic Models of Free Riding: New
Evidence on Probability Bias and Learning. Cambridge, Mass.: Dept. of Economics,
Massachusetts Institute of Technology (1990), https://dspace.mit.edu/bitstream/
handle/1721.1/64219/testinggametheor00palf.pdf

Papamakarios, G., Pavlakou, T., Murray, I.. Masked Autoregressive Flow for
Density Estimation. In: Guyon, I., Luxburg, U.V., Bengio, S., Wallach, H., Fergus,
R., Vishwanathan, S., Garnett, R. (eds.) Advances in Neural Information Processing
Systems. vol. 30. Curran Associates, Inc. (2017), https://proceedings.neurips.cc/
paper/2017 /hash/6¢1da886822c67822bcf3679d04369fa- Abstract.html

Pearce, H., Ahmad, B., Tan, B., Dolan-Gavitt, B., Karri, R.: Asleep at the Keyboard?
Assessing the Security of GitHub Copilot’s Code Contributions. Communications
of the ACM 68(2), 96-105 (Jan 2025). https://doi.org/10.1145/3610721

Pesovski, 1., Santos, R., Henriques, R., Trajkovik, V.: Generative Al for Customiz-
able Learning Experiences. Sustainability 16(7) (2024). https://doi.org/10.3390/
sul6073034

Pudari, R., Ernst, N.A.: From Copilot to Pilot: Towards Al Supported Software
Development (2023), https://arxiv.org/abs/2303.04142

Pudasaini, S., Miralles-Pechuén, L., Lillis, D., Llorens Salvador, M.: Survey on
Al-Generated Plagiarism Detection: The Impact of Large Language Models on
Academic Integrity. Journal of Academic Ethics (Nov 2024). https://doi.org/10.
1007/s10805-024-09576-x

Qadir, J.: Engineering Education in the Era of ChatGPT: Promise and Pitfalls
of Generative Al for Education. In: 2023 IEEE Global Engineering Education
Conference (EDUCON). pp. 1-9 (2023). https://doi.org/10.1109/EDUCON54358.
2023.10125121

Ranzato, M., Boureau, Y.L., Chopra, S., LeCun, Y.: A Unified Energy-Based
Framework for Unsupervised Learning. In: Meila, M., Shen, X. (eds.) Proceedings
of the Eleventh International Conference on Artificial Intelligence and Statistics.
Proceedings of Machine Learning Research, vol. 2, pp. 371-379. PMLR (Mar 2007),
https://proceedings.mlr.press/v2/ranzato07a.html

28

https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1145/3568813.3600138
https://doi.org/10.1108/978-1-83608-852-320241019
https://doi.org/10.1108/978-1-83608-852-320241019
https://doi.org/10.1109/CAI59869.2024.00033
https://doi.org/10.1109/CAI59869.2024.00033
https://doi.org/10.1109/ICSE48619.2023.00181
https://doi.org/10.1109/ICSE48619.2023.00181
https://arxiv.org/abs/2305.11873
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1145/2275597.2275599
https://dspace.mit.edu/bitstream/handle/1721.1/64219/testinggametheor00palf.pdf
https://dspace.mit.edu/bitstream/handle/1721.1/64219/testinggametheor00palf.pdf
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://proceedings.neurips.cc/paper/2017/hash/6c1da886822c67822bcf3679d04369fa-Abstract.html
https://doi.org/10.1145/3610721
https://doi.org/10.1145/3610721
https://doi.org/10.3390/su16073034
https://doi.org/10.3390/su16073034
https://doi.org/10.3390/su16073034
https://doi.org/10.3390/su16073034
https://arxiv.org/abs/2303.04142
https://doi.org/10.1007/s10805-024-09576-x
https://doi.org/10.1007/s10805-024-09576-x
https://doi.org/10.1007/s10805-024-09576-x
https://doi.org/10.1007/s10805-024-09576-x
https://doi.org/10.1109/EDUCON54358.2023.10125121
https://doi.org/10.1109/EDUCON54358.2023.10125121
https://doi.org/10.1109/EDUCON54358.2023.10125121
https://doi.org/10.1109/EDUCON54358.2023.10125121
https://proceedings.mlr.press/v2/ranzato07a.html

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

53.

Rump, A., Zaytsev, V., Mader, A.: Requirements for an Automated Assesment Tool
for Learning Programming by Doing. In: Proceedings of the 18th IEEE International
Conference on Software Testing, Verification and Validation (ICST) (2025)
Sajadi, S., Huerta, M., Ryan, O., Drinkwater, K.: Harnessing Generative Al to
Enhance Feedback Quality in Peer Evaluations within Project-Based Learning
Contexts. International Journal of Engineering Education (2024), https://www.ijee.
ie/latestissues/Vol40-5/02_ ijee4488.pdf

van Santen, J.: Using LLM Chatbots to Improve the Learning Experience in
Functional Programming Courses. Bachelor’s thesis, Universiteit Twente, Enschede,
The Netherlands (Feb 2024), http://purl.utwente.nl/essays/98155

Shaer, O., Cooper, A.: Integrating Generative Artificial Intelligence to a Project-
Based Tangible Interaction Course. IEEE Pervasive Computing 23(1), 63-69 (2024).
https://doi.org/10.1109/MPRV.2023.3346548

Tamilselvi, C., Maanu P, A., Priya T, A., Kalaiyarasi, R., Nithiyasree P., Mo-
hanaprakash T. A.: Empowering Coders: Revolutionizing Programming Education
with NLP and Challenge-Based Learning. In: Proceedings of the Third International
Conference on Smart Technologies and Systems for Next Generation Computing.
pp. 1-6. ICSTSN (2024). https://doi.org/10.1109/ICSTSN61422.2024.10670818
University of Twente: Learning-by-Interacting: The University of Twente Vi-
sion on Learning and Teaching. https://www.utwente.nl/en/service-portal/
organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
(Apr 2023)

Vahid, F.: Al in CS Education: Opportunities, Challenges, and Pitfalls to Avoid.
ACM Inroads 15(3), 52-57 (Aug 2024). https://doi.org/10.1145/3679205
Vargas-Murillo, A.R., Pari-Bedoya, I.LN.M. de la A., Guevara-Soto, F. de J.: The
Ethics of AI Assisted Learning: A Systematic Literature Review on the Impacts
of ChatGPT Usage in Education. In: Proceedings of the 2023 8th International
Conference on Distance Education and Learning. p. 8-13. ICDEL, ACM (2023).
https://doi.org/10.1145/3606094.3606101

Walters, W.H.: The Effectiveness of Software Designed to Detect AI-Generated
Writing: A Comparison of 16 Al Text Detectors. Open Information Science 7(1),
20220158 (2023). https://doi.org/10.1515/opis-2022-0158

Willis, S., Byrd, G., Johnson, B.D.: Challenge-Based Learning. Computer 50(7),
13-16 (2017). https://doi.org/10.1109/MC.2017.216

Wood, D.F.: Problem Based Learning. British Medical Journal 326(7384), 328-330
(2003). https://doi.org/10.1136 /bmj.326.7384.328

Wu, T., Chang, M.: Application of Generative Artificial Intelligence to Assessment
and Curriculum Design for Project-Based Learning. In: Proceedings of the Inter-
national Conference on Engineering and Emerging Technologies. pp. 1-6. ICEET
(2023). https://doi.org/10.1109/ICEET60227.2023.10525933

Yan, L., Greiff, S., Teuber, Z., Gasevi¢, D.: Promises and Challenges of Generative
Artificial Intelligence for Human Learning. Nature Human Behaviour 8(10), 1839-
1850 (Oct 2024). https://doi.org/10.1038/s41562-024-02004-5

Zeller, A.: Why Programs Fail: A Guide to Systematic Debugging. Elsevier Science
(2009). https://doi.org/10.1016/B978-1-55860-866-5.X5000-0

29

https://www.ijee.ie/1atestissues/Vol40-5/02_ijee4488.pdf
https://www.ijee.ie/1atestissues/Vol40-5/02_ijee4488.pdf
http://purl.utwente.nl/essays/98155
https://doi.org/10.1109/MPRV.2023.3346548
https://doi.org/10.1109/MPRV.2023.3346548
https://doi.org/10.1109/ICSTSN61422.2024.10670818
https://doi.org/10.1109/ICSTSN61422.2024.10670818
https://www.utwente.nl/en/service-portal/organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
https://www.utwente.nl/en/service-portal/organisation-regulations-and-codes-of-conduct/vision-on-learning-and-teaching
https://doi.org/10.1145/3679205
https://doi.org/10.1145/3679205
https://doi.org/10.1145/3606094.3606101
https://doi.org/10.1145/3606094.3606101
https://doi.org/10.1515/opis-2022-0158
https://doi.org/10.1515/opis-2022-0158
https://doi.org/10.1109/MC.2017.216
https://doi.org/10.1109/MC.2017.216
https://doi.org/10.1136/bmj.326.7384.328
https://doi.org/10.1136/bmj.326.7384.328
https://doi.org/10.1109/ICEET60227.2023.10525933
https://doi.org/10.1109/ICEET60227.2023.10525933
https://doi.org/10.1038/s41562-024-02004-5
https://doi.org/10.1038/s41562-024-02004-5
https://doi.org/10.1016/B978-1-55860-866-5.X5000-0
https://doi.org/10.1016/B978-1-55860-866-5.X5000-0

	The Impact of Generative Artificial Intelligence Tools in Project-Based Learning

