
VIDEO SLIDE

GEN-AI TOOLS IN 
PROJECT-BASED 
LEARNING

LETTING STUDENTS PLAY
WITH COPILOT AND CHATGPT
IN THEIR FIRST SEMESTER
PROGRAMMING PROJECT

Formal Methods and ToolsTeaching
University of Twente



• Tom van Dijk
• Coordinator of Q2 Software Systems (module) (15 EC)
• Teacher of Q2 Object-oriented Programming (8 EC)

• Vadim Zaytsev
• Programme Director of Technical Computer Science
• Teacher of Q2 Software Design (4 EC)

• Internally funded by the University of Twente

INVESTIGATORS

.



• AI is upon us! Doom! [citation needed]

• Lack of understanding what implications are on the learning process

• Do students even need to learn programming? Or report writing?

• Should we force students to (learn to) use AI for programming?

• Is using ChatGPT academic misconduct? Always or sometimes?

• Can everyone use AI to successfully do the programming project?

• Are any playing fields being leveled? Or is everything more unequal?

OVERVIEW OF THE STUDY

.



• First-semester 8 EC programming course in Java
• Object-oriented programming, Java collections, JML, basics of 

concurrency, a little bit of networking with Java sockets

• Students start with (near) zero programming experience

• ± 7-8 weeks of programming lectures and practicals

• ± 2 weeks of programming project
• Implement a simple board game
• Write a server and a client for this board game
• Implement a very basic AI and play against each other

BUT WAIT, WHAT IS THE CONTEXT?

.



1. Impact on quality of code and quality of report

2. Influence on time to completion, amount of effort, efficiency

3. Which rubric criteria / learning objectives are affected and how? 

4. How is understanding of code and problem-solving affected?

5. How does it affect the learning process and student engagement?

RESEARCH QUESTIONS

.



• Hire student assistants (~40) to repeat the project over the summer

• Four groups
1. Control group
2. Use Github Copilot (“advanced autocomplete”)
3. Use ChatGPT
4. Use both

• Group assignment such that each group has the same mixture of 
low/medium/high programming skill, low/high Copilot skill, low/high ChatGPT 
skill (obtained via self-report)

METHODOLOGY

.



• 36 hours of programming project, code + report, aiming for a high grade

• Maintain reflective journal and monitoring spreadsheet

• Afterwards: self-assessment and peer review to establish grade

• Followed by: focus group meetings

METHODOLOGY

.



• Each project is done solo

• Each project is done in full: server, client, AI

• The game is Hex, slightly more difficult than normal projects

• Consider the best strategy to get a high grade within 36 hours

(FOR THE PILOT STUDY)

PROGRAMMING PROJECT

.



• Every 1-2 hours, write an entry in the reflective journal
• Should take 5-10 minutes
• Also for the control group!

• Additional entries whenever there are observations or experiences they’d like to 
note down

• Instructed to be specific and detailed, screenshots, etc.

• Manually tagged afterwards

REFLECTIVE JOURNAL

.



• Three focus group meetings with 5-10 humans

FOCUS GROUP MEETINGS

.



• Process
o joy — positive reactions/emotions
o pain — negative reactions/emotions
o boost — saving time or energy
o reason — getting (or not getting) explanations from AI

• Activities
o refactoring — intentional changes in the code
o debugging — dealing with errors and defects
o testing — probing, writing or running tests
o planning — project outlining together with AI
o …

• Concrete
o concurrency — threads, race conditions, etc
o class diagram — apparently more popular than sequence diagrams
o ...

(READ AND TAGGED MANUALLY)

REFLECTION JOURNALS

.



• Functionality (20%)

QUANTITATIVE RESULTS (GRADES)

.



• Software (40%)

QUANTITATIVE RESULTS (GRADES)

.



• Report (40%)

QUANTITATIVE RESULTS (GRADES)

.



• Final grade

QUANTITATIVE RESULTS (GRADES)

.



Files: 14..63 [25.7]

Classes: 12..32 [18.6]

LOC: 2671..25095 [11473]

CC: [2.01]

Fields: 32..56 [47.3]
Methods: 49..158 [97.0]

Files: 10..73 [25.4]

Classes: 9..53 [20.7]

LOC: 7018..23064 [14282]

CC: [2.35]

Fields: 23..64 [48.9]
Methods: 57..316 [128.1]

Files: 13..47 [26.1]

Classes: 14..35 [22.6]

LOC: 6758..38918 [19676]

CC: [1.83]

Fields: 48..136 [71.3]
Methods: 72..247 [158.0]

Files: 10..37 [23.1]

Classes: 8..36 [19.5] 

LOC: 3423..18721 [12849]

CC: [2.28]

Fields: 20..148 [65.1]
Methods: 33..172 [114.5]

CODE ANALYSIS

.



• I started to believe that the more questions I ask, the dumber it gets.
o (technical problems with token limit, other hiccups and shortcomings)
o (we can expect this to be fixed in next versions)

• I didn’t want to go over the details, which is why I sent what is inside the file. It 
solved the issue!
o (YOLOing through the project works; if you want to avoid learning, you will)

• The quality of that I didn’t check.
o (testing and documentation suffered most)

(BASED ON REAL QUOTES FROM JOURNALS)

HIGHLIGHTS

.



• And then I spotted another assumption that was made by the AI and it was wrong.
o (limited context leads to many nontrivial assumptions forming technical debt)

• I overspend time on trying to figure out the problem using ChatGPT.
o (straightforward debugging/coding could have been easier)

• I found this extremely unhelpful and tried resolving it myself and I did succeed.
o (taking over in complex situations works best)
o (just like with more junior colleagues!)

(BASED ON REAL QUOTES FROM JOURNALS)

MORE HIGHLIGHTS

.



• Constant anthropomorphising of technology
o "I ask him to fix..."
o "At first … but then it understood when I explained..."

• Context is often lacking
o token limit or negligence of the "developer"

• Requires skill
o should we teach it?

• If it works, it speeds up code writing
o It's not necessarily correct code!
o development not necessarily sped up
o no feeling of complexity

EVEN MORE HIGHLIGHTS

.



• Code quality
• Mixed impact in general
• Good for writing documentation, Javadoc, comments, (some JML)
• Great for simple methods
• ChatGPT has tendency to hallucinate methods
• ChatGPT tends to write a lot of redundant code
• Helpful for boilerplate, less helpful for multiple classes

• Report
• ChatGPT can create content but lacks critical thinking, detail, human touch

IMPACT ON QUALITY OF CODE AND 
REPORT

.



• Currently
o large "integrating" projects
o you learn because you do (yourself)
o testing equates quality of artefact with quality of learning

• With AI
o no doing necessary => no learning guaranteed
o quality of artefact is even more removed from learning

• Possible solution
o project is pass/fail (signed off)
o opportunities to demonstrate what was learnt

LEARNING BY DOING

.



• First proposal (another faculty)
• let's ban AI on this campus!
• let's copy from Elsevier
• prohibited unless permitted
• clear statement if used
• clear statement if not used
• focused on fraud and liability

• CS-specific policy
• permitted unless prohibited
• be responsible for what you submit
• if AI is core, tell all the details
• if not core, nobody cares
• may vary per study unit
• focused on not interfering with learning practices

(UNIVERSITY OF TWENTE EDITION)

AI IN CS POLICY

.



• Students will use generative AI for take-home work
• It is almost the same as having a tutor / senior student / mentor / parent 

that is available all day and rarely complains

• Consider role of take-home work in the course: assessment or learning?

• Consider an assessment strategy that is generative-AI-aware
• Oral exams / presentations after submission
• Written “project exam” after submission
• Just changing the rubric may not be sufficient!

• Guidelines on using generative AI
• Clarification of difficult concepts
• Generate feedback rather than primary output
• Do not use as a crutch when debugging or learning, and use it to give 

additional feedback after completing an exercise

FINAL THOUGHTS

.


	Slide 1: GEN-AI tools in Project-Based learning
	Slide 2: Investigators
	Slide 3: OVERVIEW OF THE STUDY
	Slide 4: But Wait, what is the CONTEXT?
	Slide 5: Research questions
	Slide 6: methodology
	Slide 7: methodology
	Slide 8: Programming project
	Slide 9: Reflective journal
	Slide 10: Focus group meetings
	Slide 11: Reflection journals
	Slide 12: Quantitative results (gradeS)
	Slide 13: Quantitative results (gradeS)
	Slide 14: Quantitative results (gradeS)
	Slide 15: Quantitative results (gradeS)
	Slide 16: code analysis
	Slide 17: Highlights
	Slide 18: More Highlights
	Slide 19: Even More Highlights
	Slide 20: Impact on quality of code and report
	Slide 21: Learning by doing
	Slide 22: Ai in cs policy
	Slide 23: FINAL THOUGHTS

