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Abstract. We consider algorithms for parity games that use attractor
decomposition, such as Zielonka’s recursive algorithm, priority promotion,
and tangle learning. In earlier work, we identified the Two Counters
parity game family that requires exponential time for many algorithms,
including attractor decomposition algorithms, and we identified the main
mechanism that slows down parity game algorithms as so-called dis-
tractions. We observe a fundamentally different approach in avoiding
distractions between algorithms that use attractor decomposition and al-
gorithms that compute progress measures. We now propose an alternative
attractor-based method to avoid distractions by applying the attractor
decomposition recursively. We demonstrate that this algorithm solves
the Two Counters games efficiently, but that a modification of the Two
Counters method can also delay the recursive algorithm exponentially.

1 Introduction

Parity games are turn-based games played on a finite graph. Two players Odd
and Even play an infinite game by moving a token along the edges of the graph,
such that the successor from each vertex is chosen by the player controlling that
vertex. Each vertex is labeled with a natural number called the priority and the
winner of the game is determined by the parity of the highest priority that is
encountered infinitely often. Player Even wins if this parity is even; player Odd
wins if this parity is odd.

Can we solve parity games in polynomial time? Solving parity games is
known to lie in NP ∩ co-NP. It shares this status with a number of other path-
forming graph problems, including mean payoff games and simple stochastic
games [5,6,16]. Because parity games are in NP ∩ co-NP, it is widely speculated
that a polynomial-time solution exists. Yet despite years of effort, no such solution
has been found for the parity game problem or the related problems. In recent
times, solutions have been found that have a “quasi-polynomial” upper bound,
i.e., O(nlog n), which is above polynomial but below exponential [4,24]. A proof
that parity games do not admit a polynomial-time solution would imply P ̸= NP.

Parity games also play a central role in several popular domains in theoretical
computer science. Several problems in formal verification and synthesis can be
reduced to the problem of solving parity games, as parity games are as expressive
as the modal µ-calculus, capturing propositional logic with nested least and
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greatest fixed point operators. We highlight in particular their application to the
synthesis problem of linear temporal logic (LTL). In recent years, the SYNTCOMP
competition track of LTL synthesis [17] has been won repeatedly by tools that
translate a specification to a parity game and solve the parity game in order to
produce a controller, such as Strix [23] and ltlsynt [25].

In this work, practical performance is not our primary concern. A number
of current algorithms, including DFI [13], FPJ [22], priority promotion [2], and
tangle learning [8] already solve practical parity games of millions of vertices
in mere seconds [9,13], while generating these games requires several orders
of magnitude more time. These practical parity games have very few distinct
priorities relative to the size of the game. This is not surprising as many popular
logics such as LTL and CTL* can be captured by µ-calculus formulae of at most
two alternation levels [3,7]. Furthermore, what makes parity games difficult for
algorithms like tangle learning is the presence of distractions that repeatedly
“mislead” the solver, as discussed below. Parity games arising from practical
applications do not appear to have these features, as even algorithms that are
highly sensitive to them, like DFI and FPJ, are among the fastest solvers.

Our aim is to study features of hard parity games that slow down algorithms
to their worst-case behavior. One such feature is the tangle, introduced in [8].
Tangles are roughly described as strongly connected subgames where one player
has a winning strategy for all plays confined to the tangle. Tangles play a
fundamental role in parity game algorithms, but most algorithms are not explicitly
aware of tangles and can explore the same tangles repeatedly, especially in the
presence of nested tangles [8]. The algorithms proposed in [8] solve parity games
by explicitly computing tangles using attractor computation.

Another feature of hard parity games is that some vertices are distractions.
We developed the concept of a distraction earlier in [8,10,13]. With a distraction
we mean a vertex that a solver “assumes” to be good for one of the players,
typically because the vertex has a high even or odd priority, but that must be
avoided along some or all of the paths in order to win.

In this paper we give several examples of parity games with distractions. One
particular example is the Two Counters family [10], which is an exponential lower
bound for many of the parity game algorithms implemented in Oink [9], such
as Zielonka’s recursive algorithm, priority promotion, tangle learning, the fixed
point algorithms DFI and FPJ, and small progress measures [18]. This family
also slows down the quasi-polynomial time progress measures algorithms [15,19]
and quasi-polynomial variations on Zielonka’s algorithm.

Every algorithm makes assumptions about the preference order between
vertices, i.e., which vertices are good targets to play towards and which vertices
are not. A fundamental difficulty in path-forming problems such as parity games
is that it is not known what happens “after” a vertex is visited in a play, without
investigating the rest of the parity game. This is especially difficult when many
tangles need to be explored to determine if a vertex is safe to play towards or a
distraction that leads to a losing game. For hard parity games, the decision that
a vertex is a distraction assumes that certain other vertices are not distractions.
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When such a vertex is then found to be a distraction, earlier decisions are
invalidated and earlier distractions need to be reevaluated. This leads to an
exponential running time for many algorithms.

Since different algorithms use different methods to deal with the distractions,
one of our aims is to design algorithms that combine different methods, so that
the algorithm is less “vulnerable” to certain distractions. The eventual goal is
of course to find an algorithm that runs in polynomial-time, or improve our
understanding of how this is difficult if not impossible to achieve.

Contributions We observe that algorithms based on attractor decomposition,
such as Zielonka’s recursive algorithm, priority promotion, and tangle learning,
recognize distractions by attracting distractions to regions of the opponent.
Other parity game algorithms, such as those based on computing progress
measures, use a fundamentally different mechanism to avoid distractions. Our
main contribution is to extend tangle learning to avoid distractions in a way
similar to how these other parity game algorithms avoid distractions. After
applying attractor decomposition once to the parity game, we continue applying
attractor decomposition recursively, further decomposing the game into ever
smaller regions. We propose to call this algorithm recursive tangle learning.
We propose two versions of this algorithm: one-sided recursive tangle learning uses
only this alternative method to avoid distractions; whereas standard recursive
tangle learning combines the two methods (by attracting and by recursion). We
also show that the two new algorithms can both be tricked to run in exponential
time, by designing parity games where distractions become distracting again.

2 Preliminaries

We formally define a parity game ⅁ as a tuple (V , V , E, pr) where V = V ·∪ V
is a set of n vertices partitioned into disjoint sets V controlled by player Even
and V controlled by player Odd, and E ⊆ V × V is a left-total binary relation
describing all edges. Every vertex has at least one successor. We also write E(u)
for all successors of u and u → v for v ∈ E(u). The function pr : V → {0, 1, . . . , d}
assigns to each vertex a priority, where d is the highest priority in the game. We
write α ∈ { , } to denote player or and α for the opponent of α. Given some
set of vertices U , we write Uα for all vertices in U controlled by player α.

We write pr(v) for the priority of a vertex v, pr(V ) for the largest (highest)
priority of a set of vertices V , and pr(⅁) for the largest priority in ⅁. Furthermore,
we write pr−1(p) for all vertices with the priority p. With pr−1( ) and pr−1( )
we denote all vertices with an even or odd priority. Given some priority p, we
write parity(p) to mean if p is even, or if p is odd.

A play π = v0v1 . . . is an infinite sequence of vertices consistent with E, i.e.,
vi → vi+1 for all successive vertices. We denote with inf(π) the vertices that
occur infinitely many times in π. Player Even wins a play π if pr(inf(π)) is even;
player Odd wins if pr(inf(π)) is odd. Similarly, for any cycle in the game, we say
that player Even wins the cycle if the highest priority along the cycle is even; or
player Odd if the highest priority is odd.
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A (positional) strategy σ : U → U (U ⊆ V ) assigns to each vertex in its
domain a single successor in E, i.e., σ ⊆ E. We refer to a strategy of player
α when the domain is restricted to Uα. We write Plays(v) for the set of plays
starting at vertex v. We write Plays(v, σ) for all plays from v consistent with σ,
and Plays(V, σ) for {π ∈ Plays(v, σ) | v ∈ V }.

A basic result for parity games is that they are memoryless determined [14],
i.e., each vertex is either winning for player Even or for player Odd, and both
players have a strategy for their winning vertices. Player α wins vertex v if they
have a strategy σ such that every π ∈ Plays(v, σ) is winning for player α. That
is, player α has a strategy σ such that they win all cycles reachable from v in the
induced game ⅁[σ], i.e., the game where vertices in the domain of σ only have an
edge to the chosen successor in σ.

For some set of vertices U , we write E(U) to denote {v ∈ E(u) | u ∈ U}. We
call a set of vertices U α-closed if (∀u ∈ Uα.E(u)∩U ̸= ∅)∧ (∀u ∈ Uα.E(u) ⊆ U),
i.e., player α can stay in U and player α cannot leave U . A set of vertices D ⊆ V
is called a dominion of player α if player α has a strategy to stay in D and win
all plays in D and D is α-closed.

Solving a parity game means computing the winner of each vertex (assuming
perfect play) and the strategy of each player to win these vertices.

Attractor computation Several algorithms for solving parity games employ at-
tractor computation. Given a set of vertices A, the attractor to A for player α
represents those vertices from which player α can force a visit of A. We write
Attr⅁

α(A) to attract vertices in ⅁ to A as player α, i.e., the least fixed point of

Z := A ∪ {v ∈ Vα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}

That is, starting with Z = ∅, we evaluate the above expression updating Z
until we reach a fixed point. In practice, we compute the α-attractor of A with a
backward search from A, initially setting Z := A and iteratively adding α-vertices
with a successor in Z and α-vertices with no successors outside Z. We call a set
of vertices A α-maximal if A = Attr⅁

α(A). The attractor also yields an attractor
strategy by selecting a vertex in Z for every α-vertex v when v is added to Z,
and by selecting a vertex in Z for all α-vertices in A that can play to Z. In the
remainder of this work, we typically use A for the target set of vertices and Z for
the attractor set. We also write AttrU

α (A) restricted to a set of vertices U , i.e.,
the least fixed point of

Z := A ∪ {v ∈ Uα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Uα | E(v) ∩ U ̸= ∅ ∧ E(v) ∩ U ⊆ Z}

Typically, A ⊆ U . The idea is that we only attract vertices from the set U
towards the target set A, and that the vertices of player α may only escape to
vertices in the set U .

Attractor decomposition Attractors are typically used to attract to a set A :=
pr−1(pr(⅁)), i.e., the vertices with the highest priority in the game. By repeatedly
computing this attractor and removing it from the game, the game is decomposed
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Fig. 1: A parity game with two tangles

into so-called regions. We call the vertices in A the top vertices of region Z. We
identify a set of open top vertices O := {v ∈ Aα | E(v) ∩ Z = ∅} ∪ {v ∈ Aα |
E(v) ̸⊆ Z}, i.e., all top vertices controlled by α that cannot stay in Z and all
top vertices controlled by α that can leave Z. By definition, only vertices in A
can be open, as all vertices in Z \ A are attracted.

Typically we are interested in whether a region is closed w.r.t. a local subgame
rather than the entire game, i.e., whether player α can escape from A to this
local subgame. We distinguish these by calling one locally closed and the other
globally closed.

Tangles A tangle is a pair (U, σ), where U ⊆ V is a nonempty set of vertices,
σ : Uα → U is a strategy for all vertices of player α, such that player α wins all
cycles in the induced subgame ⅁[U, σ], and ⅁[U, σ] is strongly connected.

Tangles have some important properties. All vertices of the winner have a
strategy to stay inside the tangle, while the opponent must escape; otherwise
they lose. Due to the strongly connected nature of a tangle, the opponent is free
to choose any escape. If a tangle is closed, i.e., the opponent cannot escape, then
the tangle is a dominion for player α. Furthermore, the highest priority in the
tangle is of player α.

Tangles can be nested. See for example Figure 1. Player Odd wins the strategy
{d → e}. Player Even either loses in a cycle with highest priority 5 or in a
cycle with highest priority 3. The dominion {a, b, c, d → e, e} (i.e., vertices
{a, b, c, d, e} with -strategy {d → e}) contains the tangle {b, c, d → e, e} and
the tangle {c, e}.

Tangle attractors Because the opponent α must escape a tangle won by player
α, we can extend attractor computation by attracting all vertices of a tangle
simultaneously when the escapes lead to Z. We update the attractor strategy
with the tangle strategy.

We extend attractor computation to attract tangles, writing Attr⅁
α(A, T ) to

attract vertices in ⅁ and vertices of tangles in the set of tangles T to the target
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set of vertices A as player α, i.e., the least fixed point of

Z := A ∪ {v ∈ Vα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Vα | E(v) ⊆ Z}
∪ {v ∈ U | (U, σ) ∈ T ∧ parity(pr(U)) = α ∧ (E(Uα) \ U) ⊆ Z}

We also write AttrU
α (A, T ) restricted to a set of vertices U of the game, i.e.,

the least fixed point of

Z := A ∪ {v ∈ Uα | E(v) ∩ Z ̸= ∅} ∪ {v ∈ Uα | E(v) ∩ U ̸= ∅ ∧ E(v) ∩ U ⊆ Z}
∪ {v ∈ W | (W, σ) ∈ T ∧ W ⊆ U ∧ parity(pr(W )) = α

∧ E(Wα) ∩ Z ̸= ∅ ∧ (E(Wα) \ W ) ∩ U ⊆ Z}

That is, the first line equals the definition of AttrU
α (A). We furthermore add

all vertices in some tangle (W, σ) ∈ T , where W is a subset of U , the winning
player is player α, there is at least one escape from the tangle to Z, and there
are no escapes to U \ Z.

Finally, we also write Attr⅁
α(A, T, ≤p) and AttrU

α (A, T, ≤p) to only attract
vertices v where pr(v) ≤ p and tangles (U, σ) where pr(U \ Z) ≤ p. This lets
us properly attract to vertices that are not the highest priority in the game,
without attracting vertices that have a higher priority. This is important for the
algorithms introduced in this paper.

3 Tangle learning

In earlier work, we presented the tangle learning algorithm [8]. We recall the
basic algorithm here.

Core idea Several algorithms to solve parity games, in particular priority promo-
tion and Zielonka’s recursive algorithm, essentially decompose the parity game
into regions using attractor computation. These regions are then refined in a
systematic way, ultimately yielding a partition between the winning regions of
both players. In [8], we introduced an algorithm that extracts from these regions
precisely the information that allows attractor decomposition algorithms to refine
the regions, namely the tangles.

By explicitly searching for these tangles, we find an algorithm that repeatedly
computes a new attractor decomposition, using the obtained tangles to improve
the decomposition. Each iteration of tangle learning decomposes the game into
regions using the tangle attractor, starting with the highest priority. If a region is
locally closed, i.e., player α can stay in the region and player α cannot escape to
the remaining subgame, then the region contains new tangles. The new tangles are
obtained by finding the strongly connected components of the region, restricted
to the attractor strategy of player α.

If a tangle has no escapes, then it is a dominion. When dominions are found,
they are maximized with another attractor for player α on the rest of the game,
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1 def search(R, T ):
2 Y ← ∅

/* while remaining set R is nonempty... */
3 while R ̸= ∅ :

/* obtain highest priority and player */
4 p← pr(R), α← parity(pr(R))

/* tangle-attract to highest-priority vertices */
5 A← {v ∈ R | pr(v) = p}
6 Z, σ ← AttrR

α

(
A, T

)
/* compute open top vertices */

7 O ← {v ∈ Aα | E(v) ∩ Z = ∅} ∪ {v ∈ Aα | E(v) ∩R ̸⊆ Z}
/* compute tangles in Z if locally closed */

8 if O = ∅ : Y ← Y ∪ sccs(Z, σ)
/* remove region Z from R */

9 R← R \ Z

10 return Y

11 def tl(⅁):
/* initialize sets */

12 W ← ∅, W ← ∅, R← V , T ← ∅
/* until the entire game is solved... */

13 while R ̸= ∅ :
/* run one iteration to search for tangles */

14 Y ← search(R, T )
/* add new open tangles to T */

15 T ← T ∪ {(U, σ) ∈ Y | E(Uα) ̸⊆ U}
/* collect any new dominions */

16 D ← {(U, σ) ∈ Y | E(Uα) ⊆ U}
17 if D ̸= ∅ :

/* maximize the dominions */
18 W ←W ∪Attr⅁(

⋃
D , T )

19 W ←W ∪Attr⅁(
⋃

D , T )
/* compute the remaining game */

20 R← R \ (W ∪W )
/* return winning regions and strategies */

21 return W , W

Algorithm 1: The basic tangle learning algorithm [8].
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Fig. 2: Solving an example game with standard tangle learning.
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and removed from the game. This procedure is simply repeated until there is
nothing left to solve.

See Algorithm 1. Each iteration of search decomposes the game into regions
and new tangles are stored in the set Y . The search method is repeatedly called;
after each call to search, we separate dominions from other tangles. If any
dominion is found, it is maximized (line 18) and removed from the game. We
omit from Algorithm 1 the computation of winning strategies, but they are easily
obtained from the tangle strategy of the dominion and the attractor strategy
when maximizing the dominion.

We prove that this algorithm solves parity games in [8]. The argument is
straightforward. We can prove that the lowest region in the attractor decomposi-
tion always contains a new tangle. Since the number of tangles in a parity game
is finite, eventually a dominion must be found, therefore eventually the algorithm
solves the entire game.

Example We illustrate how the algorithm works using an example game in
Figure 2. Recall that to determine whether a region is open, we only need to
consider the top vertices.

Iteration 1. We decompose the game into regions for the first time, and do not
yet know tangles. See Figure 2b. The first highest vertex is 9. As player Even can
still play from 5 to 3, no vertices are attracted to 9. Region 9 is open due to the
edge from 9 to 4. The next highest vertex in the remaining subgame is 8. Player
Even attracts 1 towards 8 and no other vertices are attracted: vertices 2 and 6 can
still go to 4. The region is open, as player Even cannot stay in the region from 8.
The next highest vertex is 6. We attract vertices 4 and 2 to the region; notice that
player Odd cannot escape from 2 to 1, since it is in the higher region 8. Region 6
is closed, so we now learn new tangles. When running Tarjan’s algorithm on the
region, with player Even’s vertices constricted to the strategy, we find the SCC
{6, 4 → 6}. This is a tangle with a single escape from 6 to 8. Thus the tangle
would be attracted to region 8 in the next iteration. The next highest vertex is 5.
We attract 3 to this region. The region is closed, as it is the lowest region in the
game. We learn the tangle {5, 3 → 5}, which will be attracted to region 9.

Iteration 2. We decompose the game again, and we now have the two tangles
{6, 4 → 6} and {5, 3 → 5}. See Figure 2c. Due to tangle {5, 3 → 5}, vertices
8 and 6 are now attracted to region 9. Apparently playing towards 8 is not
productive for player Even. Both regions 9 and 4 are open, but the lowest region
2 is closed and here we find a new tangle {2, 1 → 2}.

Iteration 3. We decompose the game again. See Figure 2d. Now the lowest
region 4 is closed and the tangle {4 → 2, 2, 1 → 2} is closed in the entire
game, i.e., it is a dominion. We can attract from the rest of the game toward
the dominion and now find that the entire game is won by player Even as in
Figure 2e.

In this example, vertex 8 is a distraction for player Even. Even wins vertex 8,
but accomplishes this by avoiding to play towards it. Ultimately, vertex 9 is a
distraction
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3 8 1 2 6 5 4 7

Fig. 3: Example of a game where the vertex with priority 6 is a distraction (do
not play from 2 to 6) but the entire game is won by player Even.

Exponential lower bound: The Tale of Two Counters We found in the example of
Figure 2 that vertex 8 was a distraction. Informally, a distraction is a vertex that
at first appears to be good for a player, but which must be avoided for one of two
reasons: either all plays to the vertex eventually reach a higher priority vertex
of the opponent’s parity, or all plays to the vertex eventually reach a winning
region of the opponent. That is, a vertex v is a distraction if there exist tangles
won by player α such that

– v is attracted to a region of player α, or
– v is attracted to a dominion of player α.

Not every distraction is won by the opponent. See for example Figure 3. Also
the distractions 8 and 6 in Figure 2 were eventually won by player Even.

Distractions delay parity game solvers since conclusions in earlier steps of the
algorithm can depend on the distracting vertex being won by the player. When
this assumption turns out to be false, all work based on this assumption is invalid.
If distractions repeatedly become distracting again, solvers can be delayed up to
exponential lower bounds.

In [10], we presented a parity game called Two Counters which accomplishes
this. A Two Counters game with parameter N has 2N2 + 5N vertices, 2N
distractions, and requires 2 × (2N − 1) iterations to solve. See Figure 4. There
are three distractions for each player: vertices 3, 5, 7 distract player Odd and
vertices 4, 6, 8 distract player Even. The rectangles represent bits of a binary
counter; three bits for each player. A bit is set when a tangle is learned that
attracts 3 to 10, 4 to 11, 5 to 12, etc.

Consider the highest bit of player Odd, which has vertices 8 and 15. This
bit will be set when the tangle that attracts 8 to 15 is learned. This tangle is
distracted via the solid red lines by vertices 3, 5, 7. Player Odd prefers to play
towards those vertices rather than vertex 1, until the distractions are attracted
by player Even. This happens when all three bits of player Even are set.

Initially, all 6 distractions are distracting and only the lowest Even bit is
learned, as it is not distracted. This neutralizes distraction 3. In the second
iteration, the lowest bit for Odd can be learned. This neutralizes distraction 4. In
the third iteration, the second bit for Even is learned, which was only distracted
by 4. This neutralizes distraction 5. As a consequence, the tangle that attracted
4 is no longer attracted to 11. In the fourth iteration, the second bit for Odd is
learned, which was only distracted by 3 and 5. This neutralizes distraction 6. As



Avoiding distractions in parity games 11

15

1 8

0

14

2 7

1

13

1 6

0

0

0

0

12

2 5

1

1

1

1

11

1 4

0

0

0

0

0

0

0

10

2 3

1

1

1

1

1

1

1

Fig. 4: The 3-bit Two Counters game [10].
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a consequence, the tangle that attracted 3 is no longer attracted to 10. So after
these steps, distractions 3 and 4 are distracting again.

The Two Counters game of Figure 4 works for all parity game algorithms
that neutralize distractions by attracting them to a region or dominion of the
opponent. This includes all state-of-the-art algorithms for practical games: DFI,
FPJ, priority promotion, tangle learning and Zielonka’s recursive algorithm. They
all purely rely on this mechanism and require exponential time to solve the Two
Counters games. Various other algorithms, such as those computing progress
measures, also require worst case time, but this is due to the tangles and not due
to the mechanism to avoid distractions.

4 Recursive Tangle Learning

We now present a novel algorithm to solve parity games called recursive tangle
learning.

Core idea Not all algorithms deal with distractions by attracting them to a
region or dominion of the opponent. Most algorithms from the progress measures
family [18] only view the parity game from the perspective of one of the players.
These algorithms cannot neutralize distractions by attracting them to a region or
dominion of the opponent. The small progress measures algorithm still requires
exponential time to solve the Two Counters games, but this is due to repeatedly
exploring the same tangle, not due to the distractions.

Instead, these algorithms slowly increase the values (measures) of vertices
along good paths. That is, considering the even priorities, if some even-priority
vertex u can reach a vertex v with some value a without encountering a vertex
with a higher odd priority than both pr(u) and pr(v), then vertex u will obtain
some value b > a. A distraction is limited in its ability to make progress, since
the higher opponent-priority vertex or the opponent’s dominion prevents the
distraction from increasing in value. Thus, vertices that initially play towards the
distraction eventually obtain a higher value and are preferred over the distraction.

This is a fundamentally different method; in fact the two methods are dual. The
first method recognizes distractions because they are attracted to an opponent’s
region or dominion. This is how attractor-based algorithms reason. The second
method avoids distractions because these vertices cannot increase in value. This
is how algorithms computing progress measures reason.

A different perspective is that distracted tangles are “stuck” inside the regions
of their distraction(s). For example, in the Two Counters game, the small {0, 1 →
0} tangle that attracts to 15 in the top left of Figure 4 is stuck either in region 3,
in region 5, or in region 7, which are its distractions. Thus, rather than waiting
until opponent tangles eventually “free” the distracted tangle by attracting these
distractions, perhaps another technique could be used to find these tangles.

We now propose recursive tangle learning. Whenever a region is open, we
assume that the open top vertices are distractions. We avoid these distractions
by computing the opponent’s attractor inside the region to the open top vertices.
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1 def searchrec(U , R, T ):
2 Y ← ∅

/* while top vertices remain... */
3 while R ∩ U ̸= ∅ :

/* obtain highest priority and player */
4 p← pr(R ∩ U), α← parity(pr(R ∩ U))

/* tangle-attract to next top vertices */
5 Z, σ ← AttrR

α

(
{v ∈ R ∩ U | pr(v) = p}, T,≤p

)
/* compute open vertices */

6 O ← {v ∈ Zα | E(v) ∩ Z = ∅} ∪ {v ∈ Zα | E(v) ∩R ̸⊆ Z}
/* compute tangles in Z if locally closed */

7 if O = ∅ : Y ← Y ∪ sccs(Z, σ)
/* go recursive if not locally closed */

8 else: Y ← Y ∪ searchrec(U, Z \AttrZ
α (O, T ), T )

/* remove region Z from R */
9 R← R \ Z

10 return Y

11 def rtl(⅁):
/* initialize sets */

12 W ← ∅, W ← ∅, R← V , T ← ∅
/* until the entire game is solved... */

13 while R ̸= ∅ :
/* run one iteration to search for tangles */

14 Y ← searchrec(V ,R, T )
/* handle new tangles/dominions */

15 T ← T ∪ {(U, σ) ∈ Y | E(Uα) ̸⊆ U}
16 D ← {(U, σ) ∈ Y | E(Uα) ⊆ U}
17 if D ̸= ∅ :
18 W ←W ∪Attr⅁(

⋃
D , T )

19 W ←W ∪Attr⅁(
⋃

D , T )
20 R← R \ (W ∪W )
21 return W , W

22 def ortl(⅁, α):
/* initialize sets */

23 Wα ← ∅, R← V , T ← ∅
/* until no new tangles are found... */

24 loop:
/* run one iteration to search for tangles */

25 Y ← searchrec(pr−1(α),R,T )
26 if Y = ∅ : return Wα

/* handle new tangles/dominions */
27 T ← T ∪ {(U, σ) ∈ Y | E(Uα) ̸⊆ U}
28 D ← {(U, σ) ∈ Y | E(Uα) ⊆ U}
29 if D ̸= ∅ :
30 Wα ←Wα ∪Attr⅁

α(
⋃

D, T )
31 R← R \Wα

32 return Wα

Algorithm 2: The recursive tangle learning algorithm and the one-sided
variant. The searchrec algorithm searches for new tangles given a set of
target vertices U , a remaining subgame R, and a current set of tangles T .
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Any vertices that can stay in the region thus avoid the distraction. We then
recursively perform tangle learning inside the remaining region, i.e., we recursively
decompose the open region. This is somewhat similar to how progress measures
algorithms function: after playing towards some vertex, the α-priority vertices
that can reach that vertex gain a higher value and will then be played towards
and if there are tangles, the value rises until the opponent must play towards
some other high value vertex. Thus, instead of playing to the original top vertex,
player α actually prefers to play to α-priority vertices inside the region. This is
mimicked by the recursive decomposition.

See Algorithm 2 for the algorithm. We introduce an extra parameter U to
searchrec which is the set of potential target vertices for the decomposition into
regions. We use this to instantiate different recursive tangle learning algorithms.
Now line 3 checks if any potential target vertices remain in region R. If so, we
find the next priority and player (line 4) and attract to the target vertices in R
with that priority, but we only attract vertices and tangles with at most priority p
(line 5). This ensures that if the region is locally closed, then the highest vertices
are of priority p which is essential for the property that all plays in the region
are won by player α. The other difference is that if the region is open, then we
remove the α-attractor inside Z towards O and recursively search for tangles in
the pruned region.

The rtl algorithm is almost exactly the same as tl, except we now use the
searchrec method with all vertices as potential target vertices. Essentially the
rtl algorithm uses both the recursion and opponent attraction mechanisms to
recognize or avoid distractions.

The ortl algorithm implements one-sided recursive tangle learning.
Given a player α, ortl invokes searchrec with only α-priority vertices. As a
result, all regions have α-priority top vertices, and all tangles will be for player
α, including dominions. The algorithm computes the winning region of player α,
which also implies the winning region for player α as Wα := V \ Wα. A winning
strategy for player α can be computed as well. For vertices that are attracted to
a remaining (open) region, the α-attractor strategy to the open top vertices is
the winning strategy for player α. For vertices that are not attracted, any edge
that avoids the regions of player α is a winning strategy for player α.

Correctness We sketch why the two algorithms correctly solve parity games.
Correctness of rtl is trivial, as it is the same as correctness of tl. The

difference between tl and rtl is that in addition to the tangles learned in the
primary decomposition, the recursive decomposition may lead to additional new
tangles. Thus, rtl will still learn a new tangle every iteration, from the lowest
region in the primary decomposition, and therefore eventually terminate by
finding the dominions.

Correctness of ortl is slightly more involved. We can no longer argue that
the lowest region is always closed and yields a new tangle. Instead, we consider
where vertices are in the recursive decomposition. For example, a vertex could
be attracted to region 10, subregion 6. We call this the position of a vertex. For
example, position 10-6 is higher than 10-4, but lower than 12-2. The argument is
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that if there exists a tangle for player α that causes its vertices to reach a higher
region, then some new tangle will be learned.

– If all vertices of the tangle are attracted to its top vertex, with the only
escapes to higher regions, then that tangle will be learned: in the recursive
decomposition, vertices of that tangle cannot escape to the distractions or to
lower regions.

– If not all vertices are attracted to the top vertices yet, then there must exist
another lower tangle (lower priority) that can be learned. This lower tangle
would also improve the position of some vertices.

– Therefore, if there exists a tangle that can improve the position of its vertices,
then some new tangle will be learned.

This also holds for dominions: as long as there is a dominion for player α in the
remaining game, new tangles will be learned. As a result, ortl will only terminate
when all vertices are in their highest position and the entire winning region of
player α is computed. This then also proves correctness of the winning strategy
for player α. As long as player α avoids α-attractors and chooses α-attractor
strategies along the recursive decomposition, player α has no new tangles, i.e.,
no winning cycles, and therefore the remaining game is won by player α using
that strategy.

Example We illustrate how ortl works using the example game in Figure 5. We
show the algorithm for player Even and for player Odd.

Iteration even-1. We decompose the game with only even-priority vertices as
targets. See Figure 5a. We do not attract vertex 9 to region 6, as we only attract
vertices and tangles with at most priority 6. This time, we only learn tangle
{6, 4 → 6}. Region 8 is open, and the attractor for player Odd to 8 includes
vertex 1, which has no escapes inside region 8.

Iteration even-2. See Figure 5b. Now the new tangle is attracted to region 8
and there is no tangle for player Odd to neutralize the distraction, as would be
the case with normal tangle learning. Since region 8 is open, we attract for player
Odd to the open top vertex 8. Vertex 4 can still stay in the region by playing
towards 2 and vertex 1 can do the same. Thus, we recursively decompose the
subgame of vertices 4, 2 and 1. Subregion 2 is closed and we learn the tangle
{2, 1 → 2}.

Iteration even-3. See Figure 5c. As before, but now subregion 4 is locally
closed and we obtain a dominion. Maximizing the dominion results in the entire
game won by player Even.

Iteration odd-1. We attract to vertices with an odd priority. See Figure 5d.
Region 5 is closed and we obtain tangle {5, 3 → 5}.

Iteration odd-2. Region 9 is now formed as before and is open. See Figure 5e.
If we attract for player Even towards the open top vertex 9, all vertices are
attracted, since player Odd cannot avoid top vertex 9 while staying inside the
region. No new tangles are learned, so we are done. The winning region of player
Odd is empty, and the strategy for player Even is obtained by removing all edges
from Even-controlled vertices that were avoided in the attractors of the Odd
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3 5 9

8 6 4

1 2

(a) iteration even-1

3 5 9

8 6 4

1 2

(b) iteration even-2

3 5 9

8 6 4

1 2

(c) iteration even-3

3 5 9

8 6 4

1 2

(d) iteration odd-1

3 5 9

8 6 4

1 2

(e) iteration odd-2

3 5 9

8 6 4

1 2

(f) solution odd

Fig. 5: Solving an example game with one-sided recursive tangle learning.
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Fig. 6: A exponentially hard parity game for player Even in ortl. Vertices 18
and 19 are optional and convert the game from an Even dominion to an Odd
dominion.

player and by choosing the Even-attractor strategy towards open top vertices of
player Odd: the edge 1 → 8 is discarded, the edge 4 → 6 is discarded, and the
edges 5 → 9 and 8 → 3 are selected. See Figure 5f for the result.

Exponential lower bound There is a very simple exponential lower bound parity
game for ortl. See Figure 6. We have two versions: one with and one without
the vertices 18 and 19. The mechanism is the same; the difference is that the
game is an Even dominion without vertices 18 and 19, and an Odd dominion
with vertices 18 and 19. The idea is that whenever a distraction is “defeated” by
learning a tangle that escapes the distraction, that distraction is attracted to the
higher region and becomes distracting again.

1. In the first iteration, we learn tangle {8 → 0, 0}, which will be attracted
towards 12 next. This will also attract 11 and 10.

2. In the second iteration, the recursive decomposition of region 12 contains
vertices 12, 6, 8, 0, 11, 10. We have subregions 12-10 (containing 10, 8) and
12-6 (containing 6, 0). We learn tangle {6 → 0, 0} in the subregion 12-6.

3. In the third iteration, we learn tangle {8 → 0, 6 → 0, 0} in the subregion
12-10-8. This tangle attracts towards region 14.

4. In the fourth iteration, region 14 has vertices 4, 8, 6, 0, 13, 12, 11, 10. Vertices
10 and 12 are distracting again. We learn tangle {4 → 0, 0} in subregion
14-4.

5. In the fifth iteration, we learn {8 → 0, 4 → 0, 0} in subregion 14-10-8; then
{6 → 0, 4 → 0, 0} in 14-12-6 in the sixth iteration and {8 → 0, 6 → 0, 4 →
0, 0} in 14-12-10-8 in the seventh iteration.

6. Similarly, we learn tangles in region 16 in iterations 8–15: {2, 0}, {8, 2, 0},
{6, 2, 0}, {8, 6, 2, 0}, {4, 2, 0}, {8, 4, 2, 0}, {6, 4, 2, 0}, {8, 6, 4, 2, 0}.

As is clear from the above example, the algorithm is tricked to play towards
the same distractions over and over again.
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Fig. 7: Bit 2 of a 4-bit Two Counters game that delays rtl exponentially.

The rtl algorithm solves both exponential lower bounds of Figure 4 and
Figure 6 in polynomial time. To delay rtl exponentially often, we need to
address both mechanisms. This can be accomplished by a hybrid version of both
parity games. The global structure of the game is similar to Figure 4. Every
distraction is designed to be attracted by a tangle of the opponent that requires
exponentially many steps to be found by the recursive mechanism, and that
simultaneously becomes unattractable when higher bits of the other counter are
set. The former is accomplished by the global structure of Figure 4, the latter
by the “selection chains” that give rise to exponentially many tangles depending
on the configuration of higher bits of both players. On the game of Figure 4,
both ortl and rtl would immediately ignore the distraction and set the highest
bit, as only one vertex is distracted by several distractions. In Figure 6, each
distraction distracts a different vertex. We can use this design to modify the bits
of the Two Counters game to require many iterations to solve. See Figure 7 for an
example. For presentation, we omit the outgoing edges from the Odd-controlled
vertices; they go to the higher bits like in Figure 4; the three chains are copies.

Both exponential games can be found online1. Source code of the ortl and
rtl algorithms is also available there.

5 Empirical evaluation

We present empirical results in this section. The algorithms are implemented in
Oink2. The ortl algorithm is implemented in an interleaved fashion, i.e., one
even iteration, then one odd iteration, etc, until the entire game is solved. We
refer to Appendix A for a description of various optimizations.

1 See generators counter_ortl and tc+ at https://www.github.com/trolando/oink.
2 Available online via https://www.github.com/trolando/oink

https://www.github.com/trolando/oink
https://www.github.com/trolando/oink
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equivalence checking model checking reactive synthesis
count 216 313 288
# priorities 2 1–4 3–9

mean max mean max mean max
# vertices 3.3M 40.6M 866K 27.9M 2181 178K
# edges 10.1M 167.5M 2.9M 80.8M 20149 1.45M

Table 1: Statistics of the three benchmark sets used for the empirical evaluation:
the number games per category, the number of priorities, vertices, and edges.

benchmark fpi fpj zlk pp tl rtl ortl
synthesis 36.51 0.08 36.53 0.07 0.08 0.16 0.16
model checking 74.10 79.82 50.96 11.61 27.38 42.22 59.00
equiv checking 346.89 280.79 150.21 88.36 124.27 207.87 267.56

Table 2: Cumulative runtimes in sec. of the different parity game solvers for each
benchmark set. Only includes the benchmarks that all solvers could solve.

5.1 Setup

The goal of the empirical evaluation is to study the performance of ortl and rtl
on practical parity games. We compare its performance with other algorithms
that have high practical performance, namely tangle learning (tl), priority
promotion [1] (pp), Zielonka’s recursive algorithm (zlk), fixed point iteration
with freezing [13] (fpi) and fixed point iteration with justifications [22] (fpj).
These are among the currently fastest parity game solving algorithms implemented
in Oink [8,9,12,13]. All algorithms are run without preprocessing in Oink.

We use the parity game benchmarks from model checking and equivalence
checking proposed by Keiren [21] that are publicly available online [20]. These are
313 model checking and 216 equivalence checking games. Furthermore, we consider
the benchmarks obtained from the SYNTCOMP [17] synthesis competition, which
were translated to parity games using Knor [12]. In total, there are 288 parity
games for reactive synthesis. We do not consider random games. There is no
good argument why random games would be a good representative for games
derived from actual applications, and thus interesting for practical performance.
We also do not present the performance on various artificial benchmarks for the
same reason. The rtl and ortl algorithms solve all artificially hard games in
polynomial time, except the games presented in the current paper. See Table 1
for some statistics of the three benchmark sets.

5.2 Results

Table 2 shows the cumulative runtimes of the seven algorithms across the three
benchmark sets. The results clearly show that the ortl and rtl algorithms have
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some overhead compared to tl; however, this overhead is limited. The higher
times for fpi and zlk are due to small overhead from the parallel load balancer
(although we only used 1 thread), which takes a fraction of a second.

For the synthesis benchmark, the runtimes for rtl and ortl are very close to
tl, with only minor increases. The synthesis benchmarks are already solved in a
fraction of a second by most algorithms. In model checking, although the rtl
and ortl algorithms have higher runtimes compared to tl, they still perform
competitively. The most significant overhead appears in the equivalence checking
benchmark, but even here, the rtl and ortl algorithms demonstrate reasonable
performance.

6 Discussion

In the above, we have studied two mechanisms to handle distractions in parity
games: the known method of attracting to opponent’s regions or dominions; the
proposed new method of avoiding open top vertices and recursively partitioning
regions, thus giving higher value to vertices inside the region. We proposed
recursive tangle learning and one-sided recursive tangle learning. We showed that
these two mechanisms are not sufficient to solve parity games in polynomial time,
as we demonstrate with exponential lower bounds for both algorithms.

Overall, the new algorithms rtl and ortl are roughly as fast as other high-
performance algorithms. They have the advantage of being less vulnerable to
pathological parity games, although these do not occur in parity games derived
from practical applications. Considering the vulnerability to pathological parity
games, the algorithms fpi and fpj are the most vulnerable, followed by zlk,
then pp, and tl. The ortl and rtl algorithms are the least vulnerable.

Future work concerns further ideas to detect or avoid distractions. One
interesting direction is to study how the quasi-polynomial recursive algorithms,
e.g. [24], avoid distractions. Another idea might be to find heuristics that identify
vertices that are currently distracting (because they are top vertices of an open
region) and that could be removed from the set of target vertices for recursive
tangle learning.

Conceptually it is easy to imagine that any algorithm can be fooled to all
too eagerly mark good vertices as bad and bad vertices as good, and each new
decision resetting progress on earlier distractions. Thus, whether these ideas can
lead to a true polynomial-time algorithm remains an open question.

Data availability statement

The software, benchmarks and analysed dataset are available as [11] and on
Github as: https://github.com/trolando/rtl-experiments. In addition, the
version of the algorithms studied in the current paper is tagged in the Github
repository of Oink as: https://github.com/trolando/oink/tree/ISOLA24.

https://github.com/trolando/rtl-experiments
https://github.com/trolando/oink/tree/ISOLA24
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A Optimizations

We describe several optimizations for large practical games. These optimizations
are all implemented in Oink3. Some of these optimizations were already described
in the original paper on tangle learning [8].

1. After attracting to all vertices of the highest priority: if the next highest
priority is of the same parity, we simply continue attracting.

2. To check if a region is closed, we only check the top vertices (that we attracted
towards). We already know that attracted vertices of player α play to the
region and that attracted vertices of player α cannot escape to the remaining
subgame.

3. If the highest region in the game is closed, then we immediately add it to
the corresponding winning region and remove it from the game.

4. We do not need to check if the lowest region is open, as it is always closed.
5. When attracting vertices and tangles, we track the number of remaining

edges towards the remaining game; when this number is 0, the vertex of
player α or the tangle can be attracted.

6. We only run Tarjan’s algorithm starting from the top vertices. Tarjan’s
algorithm may find SCCs that are existing tangles; in the example of Figure 2b,
if we had learned the tangle {2, 1 → 2} before and we attracted that tangle
to region 6 instead of attracting 1 to 8, then region 6 would be closed and
contain two SCCs, but only one new tangle. We can avoid duplicate tangles
by only running Tarjan’s algorithm starting from the top vertices.

7. When running Tarjan’s algorithm, we immediately add dominions to a special
queue so they can be processed afterwards, instead of separating dominions
from other tangles later.

8. An optional optimization that improves the solver for some parity games,
but delays it for other parity games: if a region is open, remove all open
vertices O and iteratively remove all player α controlled vertices with an edge
to the removed vertices and all player α controlled vertices which have as
the attractor strategy to play to a removed vertex. The remaining vertices, if
any, now form a closed region from which new tangles can be obtained.

9. If a tangle overlaps with a winning region, we delete the tangle on-the-fly.

Most optimizations for tl also work for rtl. Optimization 5 does not fully
work; we need to reset the number of remaining edges for the recursion. Op-
timization 8 is obviously replaced with the recursive decomposition. For ortl,
additionally, optimization 4 no longer works, as the lowest region could still be
open. We include these optimizations even though we are not primarily interested
in the practical performance of the proposed algorithms. The algorithms are
slower on practical games because they perform extra work that is not necessary.
They are only faster on games that are designed to be hard for other algorithms.

3 Available online via https://www.github.com/trolando/oink

https://www.github.com/trolando/oink
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