
Avoiding distractions in parity games
Tom van Dijk – t.vandijk@utwente.nl
ISoLA 2024

t.vandijk@utwente.nl


OVERVIEW

Outline of the talk
• Parity games

• Distractions

• Tangle learning

• Recursive tangle learning (this work)

• Perspectives

1 / 26



WHY PARITY GAMES?

Formal methods
• The model checking problem of modal µ-calculus...

...is equivalent to the problem of solving a parity game.
• The synthesis problem of ω-regular specifications (LTL, etc)...

...translates to the problem of solving a parity game.

• Good news! We can solve large practical parity games very fast!
(TvD, TACAS 2018)

2 / 26



WHY PARITY GAMES?

Formal methods
• The model checking problem of modal µ-calculus...

...is equivalent to the problem of solving a parity game.
• The synthesis problem of ω-regular specifications (LTL, etc)...

...translates to the problem of solving a parity game.

• Good news! We can solve large practical parity games very fast!
(TvD, TACAS 2018)

2 / 26



WHY PARITY GAMES?

Famous open problem: P vs NP

NP-hard co-NP-hard

NP
NP ∩ co-NP

P
co-NP

• P: answer computed in polynomial time
• NP: proof checked in polynomial time
• co-NP: refutation checked in polynomial time
• NP-complete: can simulate every NP problem

Parity games

• Are in NP ∩ co-NP; even in UP ∩ co-UP
• Since 2017: quasi-polynomial solutions:

strictly above polynomial time, and below exponential time
• Goal: a polynomial-time algorithm or a superpolynomial lower bound

3 / 26



WHY TANGLE LEARNING?

Main algorithm families

• Strategy improvement (policy iteration) little progress in years
• Value iteration underlying universal tree
• Decomposition-based underlying universal tree for some variants
• Universal trees have quasi-polynomial size! lower bound

Tangle learning (our approach)

• Based on decomposition with “attractors” (controlled predecessor)
• Not as rigid as Zielonka’s recursive algorithm
• Explicitly targets won subgames (tangles)

4 / 26



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c b



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c b d



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c b d a



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c b d a b



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

The play π: a b d e c e c b (d a b)ω



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

a

b c

d e

5 / 26

We need a winning condition...



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

• Each vertex has a priority { 0, 1, 2, . . . , d }
• Player Even wins if the highest priority seen infinitely often is even

5 / 26



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

The play π: 6 5 1 3 2 3 2 5 (1 6 5)ω
Who wins this play?



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

How do we determine who wins a vertex?



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

A player wins vertices V if they have a positional strategy σ : V → V
such that every play in V consistent with σ is won by that player.



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

A player wins a (subgame) G if they have a positional strategy σ
such that all cycles in the induced graph G[σ] are won by that player



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

Which vertices are won by which player?



PARITY GAMES

• A parity game is played on a directed graph
• Two players: Even and Odd
• A play is an infinite path along the edges
• The owner of each vertex chooses the successor

6

a 5

b

2

c

1

d

3

e

5 / 26

Player Odd wins with strategy {d → e }
Only two (Odd) cycles remain



PARITY GAMES

Solving a parity game

• Compute the winning regions W and W
• Compute the winning positional strategies σ and σ

6 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices
• ... and (somehow) generalize from edges to paths
• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices
• ... and (somehow) generalize from edges to paths
• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices

• ... and (somehow) generalize from edges to paths
• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices
• ... and (somehow) generalize from edges to paths

• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices
• ... and (somehow) generalize from edges to paths
• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



HOW DO THEY WORK?

How do parity game solving algorithms work?

• Systematically investigate possible paths (cycles)
• Keep good paths (even cycles)
• Reject bad paths (odd cycles)

• Sounds simple?

• Follow edges to (good) high even vertices
• Avoid edges to (bad) high odd vertices
• ... and (somehow) generalize from edges to paths
• ... and (somehow) generalize from paths to (sets of) cycles

• BUT...

7 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.

• Pick a random strategy inside the winning region?
If you play from c to c you lose.

• Play to nice high Even vertices?
If you play from b to a you lose.

• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.
• Pick a random strategy inside the winning region?

If you play from c to c you lose.
• Play to nice high Even vertices?

If you play from b to a you lose.
• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.
• Pick a random strategy inside the winning region?

If you play from c to c you lose.

• Play to nice high Even vertices?
If you play from b to a you lose.

• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.
• Pick a random strategy inside the winning region?

If you play from c to c you lose.
• Play to nice high Even vertices?

If you play from b to a you lose.
• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.
• Pick a random strategy inside the winning region?

If you play from c to c you lose.
• Play to nice high Even vertices?

If you play from b to a you lose.

• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

0

b

4

a

1

c

5

d

• Find the winning strategy for player Even.
• Pick a random strategy inside the winning region?

If you play from c to c you lose.
• Play to nice high Even vertices?

If you play from b to a you lose.
• Vertex a is a distraction for player Even

8 / 26



DISTRACTIONS

Intuition
• A distraction is a vertex that makes algorithms require more steps to

solve the parity game why? because the algorithm tries paths
(assumptions) that turn out to be unproductive

• A distraction is a vertex that seems a good target to play to but is
actually bad (or less good than other targets)

• A distraction for α is a vertex with an α-priority that the opponent α
can win if player α always tries to visit it.

9 / 26



DISTRACTIONS

3 18 1 2 16 5 4 17

10 / 26



DISTRACTIONS

3 18 1 2 16 5 4 17

Vertex 16 is a distraction.
Play 2 → 1 instead of 2 → 16 to win!

But also play 3 → 16!

Wrong assumption: play to 18, 16, 4, 2
To win: play to 2, 18 > rest

11 / 26



DISTRACTIONS

Identifying distractions
Every algorithm somehow overcomes distractions.

1 By showing that distractions lead to bad paths
• Example: paths from 16 reach 17, so avoid 16
• Decomposition-based algorithms

2 By showing that other vertices reach better paths
• i.e. give a higher “value” to vertices along good paths (to good vertices)
• Example: paths from 2 reach 16, so play to 2
• Value iteration algorithms

12 / 26



TANGLE LEARNING

Normal tangle learning

• Pure decomposition based
• shows that a distraction leads to bad paths
• does not give higher value to vertices on good paths

Recursive tangle learning (this work)

• Further decomposes each “region” recursively
• shows that a distraction leads to bad paths
• does give higher value to vertices on good paths

“I now try to play to a vertex inside a region rather than its top vertex”

13 / 26



ATTRACTOR COMPUTATION

Playing from A to B

• From which vertices A must a play eventually reach B?
• What is the highest vertex that player α can reach?
• Which vertices cannot be avoided by the opponent α?

Attractor computation

• “Backward reachability” with an opponent
• Given target set Z and a player α,

compute all vertices from which player α can ensure arrival in Z
• Add to Z (exhaustively):

• all vertices of the player α that can play to Z
• all vertices of opponent α that must play to Z

14 / 26



PARITY GAMES

Example of attractor computation

Computing the -attractor to a

a

b c

ed

f

g

h

Attractor set: {a}
Can attract: d but not b

15 / 26



PARITY GAMES

Example of attractor computation

Computing the -attractor to a

a

b c

ed

f

g

h

Attractor set: {a}, { a,d}
Can attract: b but not e

15 / 26



PARITY GAMES

Example of attractor computation

Computing the -attractor to a

a

b c

ed

f

g

h

Attractor set: {a}, { a,d}, {a,b,d}
Can attract: neither c nor e

15 / 26



PARITY GAMES

Example of attractor computation

Computing the -attractor to a

a

b c

ed

f

g

h

Attractor set: {a}, { a,d}, {a,b,d}
What if player cannot stay in {c, e}??

15 / 26



PARITY GAMES

Example of attractor computation

Computing the -attractor to a

a

b 1

0d

f

g

h

Attractor set: {a}, { a,d}, {a,b,d}
Every play inside the blue area is won by !

15 / 26



TANGLES

Tangle
A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

5

b

6

a

1

d

3

e

2

c

A game with a 5-tangle and a 3-tangle

16 / 26



TANGLES

Tangle
A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Definition
A tangle is

• a pair T = (U, σ) where
• U ⊆ V is a nonempty set of vertices
• σ : Uα → U is a strategy for player α := pr(U) mod 2

such that
• player α wins all cycles in the induced subgame G[U, σ]

• the induced subgame G[U, σ] is strongly connected

16 / 26



TANGLES

Tangle
A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Properties
• The opponent must escape (or lose inside the tangle)
• The opponent can freely choose any escape (strongly connected)
• A closed tangle (no escapes) is a winning region

• Note: any “won subgame” can be decomposed into tangles

16 / 26



TANGLES

Tangle
A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Tangles are fundamental
• All algorithms implicitly reason about tangles:

• every algorithm must deal with cycles and nested cyclic structures
• if you conclude that the opponent cannot ‘hide’ in some subgame
• then this must be because of tangles

• Most algorithms often explore the same tangle many times!
(This can lead to repetitive behavior and exponential blowup!)

16 / 26



TANGLES

Tangle
A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Tangle attractor
Because the opponent α must escape the tangle, we can use tangles to
attract all vertices of a tangle simultaneously.

Add to Z (exhaustively):
• all vertices of the player α that can play to Z
• all vertices of opponent α that must play to Z
• all vertices in an α-tangle where all escapes lead to Z

16 / 26



EXAMPLE PARITY GAME

3 5 9

8 6 4

1 2

17 / 26



TANGLE LEARNING

Tangle learning (two-player basic variation)

• Assume that every vertex has a unique priority
(just to simplify the presentation)

• Partition game into regions with tangle attractor
• Attract to highest priority
• Repeat with the remainder until nothing left

• Every locally closed region contains a new tangle
• Locally closed if the top vertex is attracted to the region
• It is a won subgame, but it may not (yet) be strongly connected
• Run Tarjan’s SCC algorithm restricted to the attractor strategy
• The result is the new tangle

• Every closed tangle is a winning region (dominion)
• After finding a dominion, maximize it with another attractor
• Remove maximized dominions from the game

18 / 26



TANGLE LEARNING

Tangle learning (two-player basic variation)

• Assume that every vertex has a unique priority
(just to simplify the presentation)

• Partition game into regions with tangle attractor
• Attract to highest priority
• Repeat with the remainder until nothing left

• Every locally closed region contains a new tangle
• Locally closed if the top vertex is attracted to the region
• It is a won subgame, but it may not (yet) be strongly connected
• Run Tarjan’s SCC algorithm restricted to the attractor strategy
• The result is the new tangle

• Every closed tangle is a winning region (dominion)
• After finding a dominion, maximize it with another attractor
• Remove maximized dominions from the game

18 / 26



TANGLE LEARNING

Tangle learning (two-player basic variation)

• Assume that every vertex has a unique priority
(just to simplify the presentation)

• Partition game into regions with tangle attractor
• Attract to highest priority
• Repeat with the remainder until nothing left

• Every locally closed region contains a new tangle
• Locally closed if the top vertex is attracted to the region
• It is a won subgame, but it may not (yet) be strongly connected
• Run Tarjan’s SCC algorithm restricted to the attractor strategy
• The result is the new tangle

• Every closed tangle is a winning region (dominion)
• After finding a dominion, maximize it with another attractor
• Remove maximized dominions from the game

18 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 (open)

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 (open)
• 8 1 (open)

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 (open)
• 8 1 (open)
• 6 4 2 (closed)

Learned tangles: {6, 4→6}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 (open)
• 8 1 (open)
• 6 4 2 (closed)
• 5 3 (closed)

Learned tangles: {6, 4→6}, {5, 3→5}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Learned tangles: {6, 4→6}, {5, 3→5}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 5 3 8 6 (open)

Learned tangles: {6, 4→6}, {5, 3→5}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 5 3 8 6 (open)
• 4 (open)

Learned tangles: {6, 4→6}, {5, 3→5}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 5 3 8 6 (open)
• 4 (open)
• 2 1 (closed)

Learned tangles: {6, 4→6}, {5, 3→5}, {2, 1→2}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Learned tangles: {6, 4→6}, {5, 3→5}, {2, 1→2}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 5 3 8 6 (open)

Learned tangles: {6, 4→6}, {5, 3→5}, {2, 1→2}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 9 5 3 8 6 (open)
• 4 2 1 (closed)

Learned tangles: {6, 4→6}, {5, 3→5}, {2, 1→2}, {4→2, 2, 1→2}

19 / 26



TANGLE LEARNING

3 5 9

8 6 4

1 2

Learned tangles: {6, 4→6}, {5, 3→5}, {2, 1→2}, {4→2, 2, 1→2}

19 / 26



TANGLE LEARNING

Tangle learning (two-player basic variation)

• Problem! This algorithm has an exponential lower bound.
• Defeated by the two binary counters game

20 / 26



EXAMPLE 3-BIT GAME

151

8

014 2

7

1

131

6

0
0

0
012 2

5

1
1

1
1

111

4

0
0

0
0

0

0
010 2

3

1
1

1
1

1

1
1

21 / 26



EXAMPLE 3-BIT GAME

Iteration Even Odd Event
000 000 Initial state

1 001 000 Set Even 3
2 001 001 Set Odd 3
3 011 000 Set Even 2 (reset Odd 3)
4 010 010 Set Odd 2 (reset Even 3)
5 011 010 Set Even 3
6 011 011 Set Odd 3
7 111 000 Set Even 1 (reset Odd 2, 3)
8 100 100 Set Odd 1 (reset Even 2, 3)
9 101 100 Set Even 3
10 101 101 Set Odd 3
11 111 100 Set Even 2 (reset Odd 3)
12 110 110 Set Odd 2 (reset Even 3)
13 111 110 Set Even 3
14 111 111 Set Odd 3

22 / 26



RECURSIVE TANGLE LEARNING

Recursive tangle learning (two-player variation)

• Same as tangle learning, and...
• ...partition every (open) region recursively:

• “We now want to avoid the top vertex instead”
• Remove the opponent attractor (inside the region) to the top vertex
• Partition the remainder of the region

Recursive tangle learning (one-player variation)

• Only consider the even priority vertices as attractor targets
(or only odd priority vertices)

23 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 1 (open)

recursive: -

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 1 (open)

recursive: -
• 6 4 2 (closed)

Learned tangles: {6, 4→6}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Learned tangles: {6, 4→6}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 1 2 (open)

recursive: 4 2 1

Learned tangles: {6, 4→6}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 1 2 (open)

recursive: 4 2 1

Learned tangles: {6, 4→6}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 1 2 (open)

recursive: 4 2 1
• 4 (open)

recursive: -

Learned tangles: {6, 4→6}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 1 2 (open)

recursive: 4 2 1
• 4 (open)

recursive: -
• 2 1 (closed)

Learned tangles: {6, 4→6}, {2, 1→2}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Learned tangles: {6, 4→6}, {2, 1→2}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 2 1 (open)

recursive: 4 2 1

Learned tangles: {6, 4→6}, {2, 1→2}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 2 1 (open)

recursive: 4 2 1

Learned tangles: {6, 4→6}, {2, 1→2}

24 / 26



RECURSIVE TANGLE LEARNING

3 5 9

8 6 4

1 2

Regions:
• 8 6 4 2 1 (open)

recursive: 4 2 1
• 4 2 1 (closed)

Learned tangles: {6, 4→6}, {2, 1→2}, {4→2, 2, 1→2}

24 / 26



DISTRACTIONS

• Vertex 8 was a distraction
• Two-player tangle learning simply attracts 8 via {3, 5} to 9
• Recursive tangle learning “avoids” 8 in the recursion

• Recursive tangle learning fixes TBC!
• But recursive tangle learning is easily defeated too (see paper)

25 / 26



DISTRACTIONS

• Vertex 8 was a distraction
• Two-player tangle learning simply attracts 8 via {3, 5} to 9
• Recursive tangle learning “avoids” 8 in the recursion
• Recursive tangle learning fixes TBC!
• But recursive tangle learning is easily defeated too (see paper)

25 / 26



PERSPECTIVES

• TL and RTL have worst-case exponential behavior
• Ongoing work: combining TL with universal tree values (PMTL)
• Ongoing work: heuristics for “currently distractions” (DF*TL)
• Ideas to prove that TL cannot solve in polynomial time

• Learning tangles moves vertices along the universal tree
• Every algorithm orders vertices with a universal tree

• Maybe: the maximal “knowledge” (tangles and path values) per iteration
can be characterized, such that the number of steps in the worst case is
quasi-polynomial?

• Could be generalized to classes of algorithms?

26 / 26


