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WHY PARITY GAMES?

Formal methods

® The model checking problem of modal pu-calculus...
...is equivalent to the problem of solving a parity game.

® The synthesis problem of w-regular specifications (LTL, etc)...
...translates to the problem of solving a parity game.
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WHY PARITY GAMES?

Formal methods

® The model checking problem of modal pu-calculus...
...is equivalent to the problem of solving a parity game.

® The synthesis problem of w-regular specifications (LTL, etc)...
...translates to the problem of solving a parity game.

® Good news! We can solve large practical parity games very fast!
(TvD, TACAS 2018)
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WHY PARITY GAMES?

Famous open problem: P vs NP

\ !
NP-hard /co-NP-hard

\ 1

P: answer computed in polynomial time
NP N co-NP

NP: proof checked in polynomial time
NP

1
I
jco-NP : : I
| co-NP: refutation checked in polynomial time
1 \\
1 !
! \
/ \

NP-complete: can simulate every NP problem

Parity games

® Are in NP N co-NP; even in UP N co-UP

e Since 2017: quasi-polynomial solutions:
strictly above polynomial time, and below exponential time

® Goal: a polynomial-time algorithm or a superpolynomial lower bound
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WHY TANGLE LEARNING?

Main algorithm families

e Strategy improvement (policy iteration) little progress in years
® Value iteration underlying universal tree

® Decomposition-based underlying universal tree for some variants

® Universal trees have quasi-polynomial size! lower bound

Tangle learning (our approach)

® Based on decomposition with “attractors” (controlled predecessor)
® Not as rigid as Zielonka's recursive algorithm

e Explicitly targets won subgames (tangles)
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

The play 7: a
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor
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e A play is an infinite path along the edges

® The owner of each vertex chooses the successor
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e A play is an infinite path along the edges

® The owner of each vertex chooses the successor
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® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

d e
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

d e

We need a winning condition...
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

a5

I

d e

e Each vertex has a priority {0,1,2,...,d}

e Player Even wins if the highest priority seen infinitely often is even
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

= L2

VR

d e

The play m: 65132325 (165)“
Who wins this play?
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

= L2

VR

d e

How do we determine who wins a vertex?
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

a5

I

d e

A player wins vertices V if they have a positional strategy o: V — V
such that every play in V consistent with ¢ is won by that player.
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

A player wins a (subgame) G if they have a positional strategy o
such that all cycles in the induced graph G[o] are won by that player
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

b [

= L2

VR

d e

Which vertices are won by which player?
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PARITY GAMES

® A parity game is played on a directed graph
® Two players: Even ® and Odd @
e A play is an infinite path along the edges

® The owner of each vertex chooses the successor

Player Odd wins with strategy {d — e}
Only two (Odd) cycles remain
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PARITY GAMES

Solving a parity game

e Compute the winning regions We and W,

e Compute the winning positional strategies o¢ and oe
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HOW DO THEY WORK?

How do parity game solving algorithms work?

e Systematically investigate possible paths (cycles)
e Keep good paths (even cycles)
® Reject bad paths (odd cycles)
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HOW DO THEY WORK?

How do parity game solving algorithms work?

e Systematically investigate possible paths (cycles)

Keep good paths (even cycles)
Reject bad paths (odd cycles)

Sounds simple?

Follow edges to (good) high even vertices
Avoid edges to (bad) high odd vertices

.. and (somehow) generalize from edges to paths

.. and (somehow) generalize from paths to (sets of) cycles
e BUT...
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DISTRACTIONS

a b

c d

® Find the winning strategy for player Even.
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DISTRACTIONS

a b

c d

® Find the winning strategy for player Even.

® Pick a random strategy inside the winning region?
If you play from c to c you lose.

® Play to nice high Even vertices?
If you play from b to a you lose.
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DISTRACTIONS

a b

c d

Find the winning strategy for player Even.

Pick a random strategy inside the winning region?
If you play from c to c you lose.

® Play to nice high Even vertices?
If you play from b to a you lose.

® \ertex a is a distraction for player Even
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DISTRACTIONS

Intuition

e A distraction is a vertex that makes algorithms require more steps to
solve the parity game why? because the algorithm tries paths
(assumptions) that turn out to be unproductive

e A distraction is a vertex that seems a good target to play to but is
actually bad (or less good than other targets)

e A distraction for « is a vertex with an a-priority that the opponent @
can win if player « always tries to visit it.
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DISTRACTIONS

O e ®—Er0—®
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DISTRACTIONS

Vertex 16 is a distraction.
Play 2 — 1 instead of 2 — 16 to win!
But also play 3 — 16!

Wrong assumption: play to 18, 16, 4, 2
To win: play to 2, 18 > rest
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DISTRACTIONS

Identifying distractions
Every algorithm somehow overcomes distractions.

@ By showing that distractions lead to bad paths
® Example: paths from 16 reach 17, so avoid 16
® Decomposition-based algorithms

® By showing that other vertices reach better paths

® j.e. give a higher “value” to vertices along good paths (to good vertices)
® Example: paths from 2 reach 16, so play to 2
® Value iteration algorithms
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TANGLE LEARNING

Normal tangle learning

® Pure decomposition based
® shows that a distraction leads to bad paths

® does not give higher value to vertices on good paths

Recursive tangle learning (this work)

® Further decomposes each “region” recursively
® shows that a distraction leads to bad paths

® does give higher value to vertices on good paths
“l now try to play to a vertex inside a region rather than its top vertex”
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ATTRACTOR COMPUTATION

Playing from A to B

® From which vertices A must a play eventually reach B?
® What is the highest vertex that player o can reach?

® Which vertices cannot be avoided by the opponent a?

Attractor computation

® “Backward reachability” with an opponent
e Given target set Z and a player «,
compute all vertices from which player o can ensure arrival in Z

® Add to Z (exhaustively):

® all vertices of the player « that can play to Z
® all vertices of opponent @ that must play to Z
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PARITY GAMES

Example of attractor computation

Computing the @-attractor to a

Attractor set: {a}
Can attract: d but not b
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PARITY GAMES

Example of attractor computation

Computing the @-attractor to a

Attractor set: {a}, {a,d}
Can attract: b but not e
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PARITY GAMES

Example of attractor computation

Computing the @-attractor to a

Attractor set: {a}, {a,d}, {a,b,d}
Can attract: neither c nor e
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PARITY GAMES

Example of attractor computation

Computing the @-attractor to a

Attractor set: {a}, {a,d}, {a,b,d}
What if player e cannot stay in {c,e}??
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PARITY GAMES

Example of attractor computation

Computing the @-attractor to a

Attractor set: {a}, {a,d}, {a,b,d}
Every play inside the blue area is won by @!
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TANGLES

Tangle

A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

i

A game with a 5-tangle and a 3-tangle
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TANGLES

Tangle

A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Definition
A tangle is
® apair T = (U,0) where
® U C V is a nonempty set of vertices
® o: U, — U is a strategy for player « := pr(U) mod 2

such that
® player a wins all cycles in the induced subgame G[U, o]

® the induced subgame G[U, o] is strongly connected
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TANGLES

Tangle

A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Properties

® The opponent must escape (or lose inside the tangle)
® The opponent can freely choose any escape (strongly connected)

¢ A closed tangle (no escapes) is a winning region

® Note: any “won subgame” can be decomposed into tangles
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TANGLES

Tangle

A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Tangles are fundamental

e All algorithms implicitly reason about tangles:
® every algorithm must deal with cycles and nested cyclic structures
® if you conclude that the opponent cannot ‘hide’ in some subgame
® then this must be because of tangles

® Most algorithms often explore the same tangle many times!
(This can lead to repetitive behavior and exponential blowup!)
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TANGLES

Tangle

A tangle is a (strongly connected) subgame for which one player has a
strategy to win all plays that stay in the subgame.

Tangle attractor

Because the opponent @ must escape the tangle, we can use tangles to
attract all vertices of a tangle simultaneously.

Add to Z (exhaustively):
® all vertices of the player « that can play to Z

® all vertices of opponent @ that must play to Z

® all vertices in an a-tangle where all escapes lead to Z

16 /26



EXAMPLE PARITY GAME
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TANGLE LEARNING

Tangle learning (two-player basic variation)

® Assume that every vertex has a unique priority
(just to simplify the presentation)
® Partition game into regions with tangle attractor

® Attract to highest priority
® Repeat with the remainder until nothing left

18/26



TANGLE LEARNING

Tangle learning (two-player basic variation)

® Assume that every vertex has a unique priority
(just to simplify the presentation)
® Partition game into regions with tangle attractor
® Attract to highest priority
® Repeat with the remainder until nothing left
® Every locally closed region contains a new tangle

® Locally closed if the top vertex is attracted to the region

It is a won subgame, but it may not (yet) be strongly connected
Run Tarjan's SCC algorithm restricted to the attractor strategy
The result is the new tangle
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TANGLE LEARNING

Tangle learning (two-player basic variation)

® Assume that every vertex has a unique priority
(just to simplify the presentation)

® Partition game into regions with tangle attractor
® Attract to highest priority
® Repeat with the remainder until nothing left

® Every locally closed region contains a new tangle
® Locally closed if the top vertex is attracted to the region
® |t is a won subgame, but it may not (yet) be strongly connected
® Run Tarjan's SCC algorithm restricted to the attractor strategy
® The result is the new tangle

® Every closed tangle is a winning region (dominion)

® After finding a dominion, maximize it with another attractor
® Remove maximized dominions from the game
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TANGLE LEARNING
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Regions:
*9 (open)
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Regions:
*9 (open)
*31 (open)
© 642 (closed)
©53 (closed)

Learned tangles: {6,4—6}, {5,3—5}
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TANGLE LEARNING

Regions:
©® 95386 (open)
° 4 (open)
21 (closed)

Learned tangles: {6,4—6}, {5,3—5}, {2,152}
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TANGLE LEARNING

Regions:
©® 95386 (open)
© 421 (closed)

Learned tangles: {6,4—6}, {5,3—5}, {2,1—2}, {4—2,2,1-2}
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TANGLE LEARNING

Learned tangles: {6,4—6}, {5,3—5}, {2,1—2}, {4—2,2,1-2}
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TANGLE LEARNING

Tangle learning (two-player basic variation)

® Problem! This algorithm has an exponential lower bound.

e Defeated by the two binary counters game
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EXAMPLE 3-BIT GAME
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EXAMPLE 3-BIT GAME

Iteration

o ~NoO o W

Rl =S S S T (o
B W N RO

Even
000
001
001
011
010
011
011
111
100
101
101
111
110
111
111

Odd
000
000
001
000
010
010
011
000
100
100
101
100
110
110
111

Event

Initial state

Set Even 3

Set Odd 3

Set Even 2 (reset Odd 3)
Set Odd 2 (reset Even 3)
Set Even 3

Set Odd 3

Set Even 1 (reset Odd 2, 3)
Set Odd 1 (reset Even 2, 3)
Set Even 3

Set Odd 3

Set Even 2 (reset Odd 3)
Set Odd 2 (reset Even 3)
Set Even 3

Set Odd 3
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RECURSIVE TANGLE LEARNING

Recursive tangle learning (two-player variation)

® Same as tangle learning, and...
e ...partition every (open) region recursively:

® “We now want to avoid the top vertex instead”
® Remove the opponent attractor (inside the region) to the top vertex
® Partition the remainder of the region

Recursive tangle learning (one-player variation)

® Only consider the even priority vertices as attractor targets
(or only odd priority vertices)
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RECURSIVE TANGLE LEARNING
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RECURSIVE TANGLE LEARNING

Regions:
*31 (open)
recursive: -

24/26



RECURSIVE TANGLE LEARNING

Regions:
*31 (open)
recursive: -
® 642 (closed)

Learned tangles: {6,4—6}
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RECURSIVE TANGLE LEARNING

Learned tangles: {6,4—6}
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RECURSIVE TANGLE LEARNING

i

gions:
“ © 86412 (open)
e ﬁ.o recursive: 4 2 1

Learned tangles: {6,4—6}
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° 4 (open)
recursive: -
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RECURSIVE TANGLE LEARNING

Regions:
©® 836412 (open)
recursive: 4 21
e 4 (open)
recursive: -
21 (closed)

Learned tangles: {6,4—6}, {2,152}
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RECURSIVE TANGLE LEARNING

Learned tangles: {6,4—6}, {2,152}
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RECURSIVE TANGLE LEARNING

i

gions:
“ ©86421 (open)
e ﬁ.o recursive: 4 2 1

Learned tangles: {6,4—6}, {2,152}
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RECURSIVE TANGLE LEARNING

Regions:
°*36421 (open)
recursive: 4 21

Learned tangles: {6,4—6}, {2,152}
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RECURSIVE TANGLE LEARNING

Regions:
°*36421 (open)
recursive: 4 21
© 421 (closed)

Learned tangles: {6,4—6}, {2,152}, {4—2,2,1-2}
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DISTRACTIONS

® Vertex 8 was a distraction
e Two-player tangle learning simply attracts 8 via {3,5} to 9

® Recursive tangle learning “avoids” 8 in the recursion
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DISTRACTIONS

Vertex 8 was a distraction

Two-player tangle learning simply attracts 8 via {3,5} to 9
® Recursive tangle learning “avoids” 8 in the recursion
® Recursive tangle learning fixes TBC!

® But recursive tangle learning is easily defeated too (see paper)
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PERSPECTIVES

TL and RTL have worst-case exponential behavior

® Ongoing work: combining TL with universal tree values (PMTL)

® Ongoing work: heuristics for “currently distractions” (DF*TL)

Ideas to prove that TL cannot solve in polynomial time
® |earning tangles moves vertices along the universal tree
® Every algorithm orders vertices with a universal tree
® Maybe: the maximal “knowledge” (tangles and path values) per iteration
can be characterized, such that the number of steps in the worst case is
quasi-polynomial?
® Could be generalized to classes of algorithms?
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